Errata

Note: " $X \longrightarrow Y$ " means change the text X to the text Y.

pp1—251, all occurrences: "et al" \longrightarrow "et al.".

p10, eq. 2.2: "
$$E[f - E[f]]^2$$
" \longrightarrow " $E[(f - E[f])^2]$ "

p11, para. 2, line 1: "will equal frequency" \longrightarrow "with equal frequency".

p31, listing 3.2: Change to

- 1. Choose *k* initial class means.
- 2. Assign each pixel to the class with the closest mean.
- 3. Determine the best possible reduction in sum of squared distances to new class means by reassigning one pixel to a new class.
- 4. If the reduction was positive, use the new class assignments and means and go to Step 3, else exit.

p31, para. 3, line 4: "alss" \longrightarrow "also".

p43, eq. 3.5: "
$$w(x', y')$$
" \longrightarrow " $w(\delta_x, \delta_y)$ ".

p46, para. 3: "When the noise is additive, the mean and median behave similarly." \longrightarrow "For additive noise the mean and median behave similarly, but the mean is the more efficient estimator when the noise truly is Gaussian."

p48, fig. 3.19 caption: "
$$(c = 3)$$
" \longrightarrow " $(c = 2)$ ".

p49, para. 1, line 1: "algorithms adjusts" \longrightarrow "algorithm adjusts".

p56, para. 3, lines 3–7: "Figure 3.26 plots this when using a 37 pixel mask." \rightarrow "For edge and corner detection SUSAN uses a 37 pixel mask, but for denoising it uses a variable size mask determined by σ . In Smith's implementation², the default σ is $2\sqrt{2}\approx 2.8$, which results in a square 15×15 mask."

p56, penultimate line: "the value Smith claims works well for all images [Smi95]." \longrightarrow "the default value used by Smith's implementation."

p66: "4.2.2 Generalizing the facet model" \longrightarrow "4.2.2 Different homogeneity criteria".

p85, last line: "The variance, or *standard error*, of the sample mean is σ^2/M ." \longrightarrow "The variance of the sample mean is σ^2/M , the square root of which is called the *standard error*."

p117, para. 1, line 2: Delete "..., or standard error, ...".

p123, insert after eq. 4.33: "This may be implemented in a simple manner. The highest possible value of k is used to cluster the data first. If Equation 4.33 is satisfied, we stop. Otherwise we decrement k and repeat. If k = 1 is reached, we stop."

pp139—251, all occurrences: "SUSAN37" \longrightarrow "SUSAN".

p139, para. 4, line 1: "The standard 37 pixel SUSAN filter" \longrightarrow "The SUSAN filter".

p139, para. 4, line 3: "and Smith claims that t=20 works well over all image types." \rightarrow "the value of which is not critical according to Smith [SM95]."

p143, fig. 4.74 caption: "with σ estimated" \longrightarrow "with σ estimated".

p158, para. 2: After "time series data." insert "The Kullback-Leibler distance measures the relative entropy, or similarity, of two probability distributions."

p159, line 1: "of Gaussian clusters." \longrightarrow "of Gaussian clusters [Alp98]."

p159, para. 4, line 1: "over all models" \longrightarrow "over all models and their possible parameter values."

p164, para. 2, line 5: "dark" \longrightarrow "light".

p165, para. 2, line 1: "For the binary segment maps" \longrightarrow "For the example binary segment maps".

p171, para. 2: Append existing reference "[OB94]".

p183, para. 2, line 2: Delete sentence "This is similar to the t-test compared."

p193, para. 2: Append sentence "Spatially varying priors, although appealing, are more complicated to implement successfully and are beyond the scope of this thesis."

p260, reference [KS00]: "May 200." → "May 2000."