Monash University
School of Computer Science \& Software Engineering
Sample Exam - 2003

CSE3322 - Programming Languages and Implementation

Total Time Allowed: 3 Hours

1. Reading time is of 10 minutes duration.
2. Examination time is of 3 hours duration.
3. The total marks are 100 .
4. All questions should be attempted.
5. Question 1 should be answered in the exam paper itself, the remaining questions in a script book.

Fill in your name and Monash Student ID.

Name: \qquad Student ID: \qquad

Question 1 [30 marks]

Answer the following multiple choice questions by ticking the box corresponding to the statement which best answers the question. You receive 2 points for each correct answer.
(a) FORTRAN was developed byIBM in the late 1930sS. Wolfram in the mid 1960sJ. Bachus and his team in the mid 1950sJ. Von Neumann in the early 1940s.
(b) Which of the following is not true about the language SML:it has type variablesit has type constructorsit has automatic type coercionit has automatic type deductionit has polymorphic types.
(c) Consider the SML program

```
fun dummy x [] = 1
    | dummy x (y::ys) = x (dummy x ys) ;
```

What does the expression dummy ~ $[4,5,6]$ evaluate to?val it $=1:$ intval it $=15:$ intval it $=\sim 6:$ intval it $=120:$ intnone of the above
(d) What is the type of the function dummy given in (c):int -> 'a list -> intreal -> 'a list -> real(int -> int) -> 'a list -> int(real -> real) -> 'a list -> realnone of the above.
(e) An abstype in ML isused to initialize data inside a structurea higher-order data structurehide the definition of higher-order functionsdefine the interface of a structurenone of the above
(f) What will the ML function mystery defined as follows do fun mystery $L=$ foldr (op +) 0.0 (map (fn $x=>x *$) L;add the elements of a listsquare the elements in a list and add them together\square square the elements in a list and add 0.0 to each onegive a syntax errornone of the above
(g) What is the type of ML function mystery defined abovereal list -> realreal list -> real list'a list -> real'a list -> 'a listnone of the above
(h) Consider the query path (V,W) run with the Prolog program:

```
edge(a,b).
edge(b,c).
edge (c,a).
path(X,Y) :- edge(X,Y).
path(X,Z) :- edge(X,Y), path(Y,Z).
```

The first answer found is $\mathrm{V}=\mathrm{a}, \mathrm{W}=\mathrm{b}$. What is the third answer found?$\mathrm{V}=\mathrm{b}, \mathrm{W}=\mathrm{c}$$\mathrm{V}=\mathrm{b}, \mathrm{W}=\mathrm{a}$$\mathrm{V}=\mathrm{a}, \mathrm{W}=\mathrm{b}$$\mathrm{V}=\mathrm{a}, \mathrm{W}=\mathrm{c}$None of the above.
(i) Consider the overloaded operator I which denotes both the functions $f_{1}: S_{1} \rightarrow T_{1}$ and $f_{2}: S_{2} \rightarrow T_{2}$. Context dependent overloading requires thatTypes S_{1} and S_{2} are different.Types T_{1} and T_{2} are different.Types S_{1} and S_{2} are different or types T_{1} and T_{2} are different.Types S_{1} and S_{2} are different and types T_{1} and T_{2} are different.
(j) Consider the Cascal program:

```
int function tricky(int x, int y) {
    y := 11;
    x := y;
}
void main(void) {
    int y = 3;
    int x = 4;
    tricky(x,y);
    writeln(x+y);
}
```

What will be written by the above program if Cascal uses call-by-reference parameter passing:714216none of the above.
(k) Consider the Cascal program:

```
int function inc(int x, int y) {
    x := y + 1;
    x := y + 1;
}
void main(void) {
    int s := 3;
    inc(s,s);
    writeln(s);
}
```

What will be written by the above program if Cascal uses call-by-name parameter passing?3456it will generate a run-time error.
(l) In which phase of a compiler is type analysis typically performed?lexical analysissyntax analysissemantic analysiscode generationlanguage-independent optimization
(m) Consider the context-free grammar with terminal symbols a, b, c, non-terminal symbols A and B where A is the start symbol and productions

$$
\begin{aligned}
& A \rightarrow B A B \mid a \\
& B \rightarrow b|c| \epsilon
\end{aligned}
$$

Which of the following strings is not in the language of the grammar:$a b b$bcacbbbccabbcabbcacba
(n) Which of the following statements is true for error correction in Burke-Fisher Parsing?it is a form of panic mode recoveryit relies on LL(1) grammarsit is a form of local error correctionit works by modifying the input stringit aborts after the first error
(o) Which of the following operations is not part of the language-independent optimization phase?moving invariants out of loopseliminating tail recursioneliminating constantsselecting more efficient target code instructions\square in-lining procedure code

Question 2 [10 marks]

Define an ML function intToString : int -> string such that intToString i returns a string representation of integer i in decimal. Example:
intToString ~12345
has answer it = "~12345" : string. You should not call the library function Int.toString! Hint: the ML operators for integer division and remainder are div and mod while chr takes an integer and returns the corresponding ASCII character.

Question 3 [10 marks]

A file system contains files and directories. A file has a name which is a string and some contents which has type char list. A directory has a name and contains files and directories. It is convenient to consider both a file and a directory as "file systems" so that a directory contains file systems. Define
(a) an ML datatype, T, for representing a file system. [3 marks]
(b) a function name : T \rightarrow string which returns the name followed by a blank character. [3 marks]
(c) a function ls : $\mathrm{T} \rightarrow$ string which returns the name of the file for a file argument and a string containing the names of all components of a directory argument. The predefined functions map : ('a -> 'b) -> 'a list $->$ 'b list and concat : string list -> string may be used in the solution. [4 marks] Example: If f is a file and d is a directory the returned values could be:

```
ls f = "main.c "
ls d = "a.out main.c main.o RCS "
```


Question 4 [10 marks]

(a) Briefly explain how call-by-name parameter passing works.
(b) Give an example of a language or system that uses call-by-name parameter passing. [2 marks]
(c) Give the main reason why call-by-name parameter passing is not widely used and give a supporting example to explain the difficulty with call-by-name parameter passing. [4 marks]

Question 5 [12 marks]

Consider the context-free grammar

$$
\begin{array}{lllll}
S & \rightarrow & X S & d S & \mid \\
X & \rightarrow Y & Z & \mid & \\
X & \mid & a Y \\
Y & \rightarrow & c & & \\
Z & \rightarrow e
\end{array}
$$

The symbols S, X, Y and Z are non-terminals with S as the start symbol while a, b, c, d, e are terminal symbols.

- Give the $F O L L O W$ and FIRST sets for each non-terminal symbol. [5 marks]
- Construct the parsing table for a non-recursive predictive parser for this grammar. [4 marks]
- Is the grammar $L L(1)$? [1 mark]
- Detail how an non-recursive predictive parser will parse the sentence dace using the table you constructed above. [2 marks]

Question 6 [4 marks]

Consider again the context-free grammar from Question 5.

- Why is this grammar not directly suitable for implementing a recursive descent parser. Identify the productions that cause the problem? [2 marks]
- Modify the grammar (of course without changing the language it defines) such that it can be implemented directly with a recursive descent parser. [2 marks]

Question 7 [14 marks]

Consider the context-free grammar

$$
\begin{array}{llll}
S & \rightarrow a X & & \\
X & \rightarrow b X & b Y \\
Y & \rightarrow & c &
\end{array}
$$

The symbols S, X, Y are non-terminals and S is the start symbol while a, b and c are terminal symbols.

- Give the cannonical collection of $L R(0)$ items for this grammar (remembering to first augment it with a new start symbol $\left.S^{\prime}\right)$. [6 marks]
- Compute the $F O L L O W$ sets for all non-terminals and give the SLR parsing table (action and goto) for this grammar. [4 marks]
- Detail how an SLR parser will parse the sentence $a b b c$ using the SLR table you constructed above. [4 marks]

Question 8

Consider the core ML program
val mystery $=f n(u, v)=>(f n(x, y)=>(u x, v i))$
(a) Give its syntax tree and assign a type variable to each subexpression.
(b) Generate a set of type equations (or constraints) on the type variables based on the annotated syntax tree from (a)
[4 marks]
(c) Solve the type equations from (b) and give the type for mystery.

