
Solutions to the 2003 Sample Exam for CSE3322

Question 1

(a) 3
(b) 3
(c) 5, the value is ~1
(d) 3
(e) 5, used to hide the definition of a datatype
(f) 2
(g) 1
(h) 5, it will return V = c,W = a

(i) 3
(j) 5, 22 will be written
(k) 3
(l) 3
(m) 5
(n) 4
(o) 4.

Question 2

fun digitToString i = str (chr (i + ord(#"0")));

(* or

fun digitToString 0 = "0"

| digitToString 1 = "1"

| digitToString 2 = "2"

| digitToString 3 = "3"

| digitToString 4 = "4"

| digitToString 5 = "5"

| digitToString 6 = "6"

| digitToString 7 = "7"

| digitToString 8 = "8"

| digitToString 9 = "9" ;*)

fun posIntToString i =

if i < 10 then digitToString i

else (posIntToString (i div 10))^

(digitToString (i mod 10));

fun intToString i =

if i < 0 then "~"^posIntToString (~i)

else posIntToString i;

1

Question 3

datatype FS = File of string * (char list)

| Directory of string * (FS list)

fun name (File(n,_)) = n^" "

| name (Directory(n,_)) = n^" "

fun ls (Directory(_,cs)) = concat (map name cs)

| ls f = name f

Question 4

(a) Call-by-name parameter passing works by textually replacing the formal
parameters in the abstraction body by the actual parameters.

(b) Algol 60 and C macros both use call by name parameter passing.

(c) It isn’t used because it is hard to understand behavior of imperative pro-
grams (i.e. programs which update variable values.) As an example con-
sider the program from the lecture notes

void swap(int x, y)

{

int t;

t := x; x := y; y := t;

}

which has strange behaviour with the call swap(i,a[i]).

2

Question 5

(a)

FIRST (S) = FIRST (X) + {d, ε} = {a, c, d, e, ε}
FIRST (X) = FIRST (Y) + FIRST (Z) + {a} = {a, c, e}
FIRST (Y) = {c}
FIRST (Z) = {e}
FOLLOW (S) = {$}
FOLLOW (X) = FIRST (S) − {ε} + FOLLOW (S) = {a, c, d, e, $}
FOLLOW (Y) = FOLLOW (X) = {a, c, d, e, $}
FOLLOW (Z) = {b} + FOLLOW (Y) = {a, b, c, d, e, $}

(b) The parsing table is:
a b c d e $

S P1 P1 P2 P1 P3
X P6 P4 P5
Y P7
Z P8

the productions are numbered in their original order:

(1) S → X S

(2) S → d S

(3) S → ε

(4) X → Y

(5) X → Z b

(6) X → a Y

(7) Y → c Z

(8) Z → e

(c) Yes, the table shows no conflicts.

(d) The parsing for dace proceeds as follows:

3

S$ dace$ P2
dS$ dace$ adv

S$ ace$ P1
XS$ ace$ P6
aY S$ ace$ adv

Y S$ ce$ P7
cZS$ ce$ adv

ZS$ e$ P8
eS$ e$ adv

S$ $ P3
$ $ accept

Question 6

(a) The parser would not be able to decide which of the productions X → Y

or X → Z b to use when trying to expand an X.

(b) The productions from (a) need to be modified such that they use distinct
lookahead. This is done by “unfolding” the productions for Y and Z into those
for X. The modified grammar is:

S → X S | d S | ε

X → c Z | e b | a c Z

Z → e

Note that you could also expand the Z production into X completely.

S → X S | d S | ε

X → c e | e b | a c e

Question 7

(a)

4

The collection of sets of LR(0) items is constructed as follows:

I0 = {
S′ → ·S
S → ·a X

}
goto(I0, S) = I1

= {
S′ → S·
}

goto(I0, a) = I2

= {
S → a · X,

X → ·b X,

X → ·b Y,

}
goto(I2,X) = I3

= {
S → a X·
}

goto(I2, b) = I4

= {
X → b · X
X → b · Y
X → ·b X,

X → ·b Y,

Y → ·c,
}

goto(I4,X) = I5

= {
X → b X·
}

goto(I4, Y) = I6

= {
X → b Y ·
}

goto(I4, c) = I7

= {
Y → c·
}

(b) FOLLOW (S) = FOLLOW (X) = FOLLOW (Y) = {$}.
The SLR table is

5

action goto
state a b c $ S X Y

0 s2 1
1 accept
2 s4 3
3 r1
4 s4 s7 5 6
5 r2
6 r3
7 r4

Productions are again numbered in their order in the augmented grammar:

(0) S′ → S

(1) S → a X

(2) X → b X

(3) X → b Y

(4) Y → c

(c)

STACK INPUT ACTION

0 a b b c $ shift 2
0 a 2 b b c $ shift 4
0 a 2 b 4 b c $ shift 4
0 a 2 b 4 b 4 c $ shift 7
0 a 2 b 4 b 4 c 7 $ reduce 4, goto 6
0 a 2 b 4 b 4 Y 6 $ reduce 3, goto 5
0 a 2 b 4 X 5 $ reduce 2, goto 3
0 a 2 X 3 $ reduce 1, goto 1
0 S 1 $ accept

6

Question 8

(a) Give its syntax tree and assign a type variable to each subexpression.

a

g

l

b

k

h

c d

j

e f

i

(,)

@ @

(,)

(,)v

x y

fn

fn

mystery

u

val

(b) Generate a set of type equations (or constraints) on the type variables based
on the annotated syntax tree from (a)

a = b val
c = e × f tuple creation
h = k × l tuple creation
g = i × j tuple creation
e = i → k function application
f = j → l function application
b = c → d function definition
d = g → h function definition

(c) Solve the type equations from (b) and give the type for mystery.

After solving we end up with

a = ((i → k) × (j → l)) → (i × j) → (k × l)

7

