UNIVERSALITY PROBABILITY OF A PREFIX-FREE MACHINE

GEORGE BARMPALIAS AND DAVID L. DOWE

Abstract

We study the notion of universality probability of a universal prefix-free machine, as introduced by C.S. Wallace (see [Dow08, Section 0.2.2] and [Dow11, Section 2.5]). We show that it is random relative to the third iterate of the halting problem and determine its Turing degree and its place in the arithmetical hierarchy of complexity. Furthermore, we give a computational characterization of the real numbers which are universality probabilities of universal prefix-free machines.

1. Introduction

One of the most important discoveries of the 20th century (especially on a conceptual level) is the notion of the universal computer-that is, a computer that can simulate any other computer. Alan Turing famously gave an abstract mathematical definition of the computer in [Tur36], also establishing the existence of universality. This notion turned out to play a fundamental role in the development of computing, both on a practical and on a theoretical level (see [Dav00] for a comprehensive history of the universal computer in the 20th centrury). First, it lead to the realization that the construction of stored-program computers (i.e. computers which can store programs and data in a uniform, interchangeable way) is possible. This, in turn, led to the the development of the physical computer as we know it today, starting with the prototypes in England and America during World War II. Second, it quickly led to the development of a rich theory of computation which heavily rests on the existence of universal machines. The theory of Kolmogorov complexity is not an exception.
1.1. The role of universality in Kolmogorov complexity. Program-size complexity (also known as Kolmogorov complexity) was introduced by Andrej Kolmogorov in [Kol65] and Ray Solomonoff in [Sol64] as a measure of complexity for programs (identified with binary strings) and was based on the following simple and appealing idea.
(1.1) The complexity of a string is the length of its shortest description.

[^0]Kolmogorov and Solomonoff used the theory of Turing machines (which we also call simply 'machines') in order to express (1.1) (and in particular, the notion of 'description') mathematically. If a machine M outputs string τ on input σ and then it halts (denoted by $M(\sigma)=\tau$) then σ is called an M-description of τ. In other words, he required that descriptions are given in an algorithmic way. He then defined the complexity of a string τ with respect to machine M as the length of the shortest string σ such that $M(\sigma)=\tau$. The existence of universal Turing machines allowed him to largely eliminate the dependency of this definition on the particular machine M, by defining the complexity with respect to a universal machine. Since the length of programs is a central concern in this theory, Kolmogorov thought of universal machines U as being able to simulate any other machine with a constant overhead in the required programs. In other words, for each machine M there exists a constant c such that for all σ we have $U(\rho)=M(\sigma)$ for some ρ which is longer than σ by no more than c bits.

Indeed, using this notion of universality he could show that if a different universal machine is chosen for the definition of complexity, the difference of the two complexities for any string is bounded by a constant. This means that the choice of a different underlying universal machine is like the choice of different coordinate system in geometry, in the sense that it does not affect the theory. Kolmogorov's definition amounts to the following rather appealing formulation.

The complexity of a string is least sum $|M|+C_{M}(\sigma)$ where $C_{M}(\sigma),|M|$ denote the complexity of σ with respect to M and the 'size' of M respectively, and M ranges over all machines.

Indeed, one should take into account the size of the machine that is used to provide descriptions since a large machine may have quite complex strings hardwired into it. In other words, every string (however complex) is fairly simple with respect to some machine. In (1.1) the precise definition of the size of a machine is not essential. Also different formulations of term 'machine' (e.g. different programming languages) produce a slight variation on the value of the complexity, which is entirely similar to the variation of the complexity according to the original formulation, when we use different underlying universal machines.

One of the main motivations of Kolmogorov for defining the complexity of programs was to give a definition of randomness of infinite binary sequences based on 'incompressibility' as follows. Let us say that a string σ is c-incompressible if it does not have a description which is shorter by c bits.

An infinite binary sequence is random if for some $c \in \mathbb{N}$ all of its initial segments are c-incompressible.
Unfortunately, Martin-Löf showed that according to the notion of 'description' that Kolmogorov defined, there is no random infinite binary string in the sense of (1.3) (see ([Kol68])). However Levin [Lev73] and Chaitin [Cha75] provided a refinement of Kolmogorov complexity (and the definition of 'description') with respect to which (1.3) gives a very plausible mathematical counterpart to the intuitive notion of randomness. They observed that, given a string σ, one can extract information not only from the bits of σ but also from its length. Hence the the information that a string contains (measured in bits) is not reflected in the Kolmogorov complexity of the string (as we defined it above) but rather in the sum of this complexity with the information that is coded in the length of its shortest description.

Therefore if we wish to define the complexity of a string as a reflection of the information that it contains (in terms of number of bits) we need to use Turing machines that cannot use the length of a description in the computation of the string that is being described. Such machines are sometimes called self-delimiting since they operate with the restriction that the reading head moves only forward and by the time they read the last bit of the input they have to halt. Such a modification does not allow the machine to scan the input and use its length as additional input information in computing the output. Moreover, they are equivalent to the socalled prefix-free machines - i.e. machines whose domain is prefix-free (i.e. there is no string such that both it and a proper extension of it belong to the domain). Such a modification gives the so-called prefix-free complexity (defined as above, but with prefix-free machines instead of plain Turing machines) which is not only a motivated refinement of Kolmogorov complexity but also allows the development of a theory of randomness for infinite binary strings based on Kolmogorov's original proposal (1.3).

In fact, Martin-Löf [ML66] had already given a definitive mathematical definition of a random (infinite) sequence long before the developments of [Lev73, Cha75]. He followed a measure-theoretic approach by specifying a canonical countable family of null sets in the space of infinite binary sequences (with the uniform measure) and calling a sequence random when it does not belong to any member of this family. This family is the collection of effectively null sets, i.e. sets of the form $\cap_{j} U_{j}$ where $\left(U_{j}\right)$ is a uniform sequence of Σ_{1}^{0} classes such that $\mu\left(U_{j}\right)<2^{-j-1}$. The idea behind this definition is that each member of the canonical family represents a stochastic test which looks for special properties of sequences. The sequences which have algorithmically special features will belong to a member of this family, hence they will not be random; and vice-versa. These sequences are called Martin-Löf random.

Schnorr (see Chaitin [Cha75]) showed a sequence is Martin-Löf random if and only if it is random according to the approach of Kolmogorov (based on (1.3) and the use of prefix-free machines). In other words, if we let $K(\sigma)$ denote the prefix-free complexity of σ (with respect to a fixed underlying universal prefix-free machine) then an infinite binary sequence X is Martin-Löf random if and only if $K\left(X \upharpoonright_{n}\right) \geq n-c$ for some constant c and all $n \in \mathbb{N}$. In other words, if for each $n \in \mathbb{N}$ the first n bits of X cannot be compressed by more than c bits.

The approaches of Martin-Löf and Kolmogorov should not be viewed as fixed definitions of randomness of infinite binary sequences but rather as a framework in which we can calibrate and study randomness of various strengths. For example, we can introduce parameters in the basic definitions that we discussed above, in the form of oracles in the underlying machines. This relativization provides natural equivalent definitions of the notion of an infinite binary sequence X being random relative to an infinite binary sequence Y. In particular, if X is random relative to $\emptyset^{(n)}$ (the halting problem iterated n times) then we call it $n+1$-random. ${ }^{1}$ This in turn provides a natural hierarchy of randomness notions. For a more detailed discussion of the basic concepts and results of algorithmic randomness (of strings and infinite sequences) we refer the reader to [Nie09, Chapters 2 and 3] and for a more elaborate history of the subject we refer to [LV97, ZL70, vL87].

[^1]1.2. Random numbers as probabilities of universal prefix-free machines. Intuitively, random streams (i.e. infinite binary sequences) are very typical and have no special features that distinguish them. Despite this, Chaitin [Cha75] showed that 'natural' examples of random streams can be obtained by considering a certain probability related to any given universal prefix-free machine. This probability was first introduced by Zvonkin and Levin in [ZL70]. Of course, probabilities are real numbers between 0 and 1, but we can easily identify them with streams if we consider their binary expansion (which is unique, if the number is irrational). Hence we can talk about random real numbers and in this fashion we may refer to the elements of the Cantor space 2^{ω} (the set of infinite binary sequences) as reals.

Chaitin considered the situation where random bits are fed as an input to a universal prefix-free machine U one after the other, until (if ever) the machine halts on the input consisting of the random bits that we provided. He then considered that probability Ω_{U} that the machine will eventually halt in such an experiment, which he called the halting probability of the machine U. This is given by

$$
\begin{equation*}
\Omega_{U}=\sum_{U(\sigma) \downarrow} 2^{-|\sigma|} \tag{1.4}
\end{equation*}
$$

where the sum is taken over all strings on which U halts. Chaitin [Cha75] showed that the halting probability of any universal machine is a random number, thus providing concrete examples of randomness. Another feature of these numbers is that they can be approximated by an increasing computable sequence of rational numbers, and this can be seen from (1.4). Such real numbers are called left computably enumerable, or left c.e. for short. Similarly, a real number is right c.e. if it is the limit of a decreasing computable sequence of rational numbers.

By the cumulative effort of Solovay [Sol75] in 1975, later Calude, Hertling, Khousainov, Wang [CHKW01] and finally Kučera, Slaman [KS01], a characterization of the reals that are halting probabilities of universal prefix-free machines was obtained. It was shown that a real number has this property exactly when it is a random c.e. real. A nice and concise proof of this can be found in [DH10, Section 9.2] (we will make essential use of the methods that are discussed there in our technical arguments in Sections 4 and 5).

We may obtain more highly random numbers if we consider a universal prefixfree machine that works with an oracle X. Then the halting probability Ω^{X} of this machine will be random relative to X. By increasing the complexity of X, the level of randomness of Ω^{X} is also increased accordingly. Such probabilities Ω^{X} were studied thoroughly in [DHMN05] (we make use of some of the results in that paper in Section 3).

On the other hand, there have been attempts to obtain highly random numbers without the use of oracle machines. In [BC02] a number which is random relative to $\emptyset^{(2)}$ was obtained as the probability that a universal prefix-free machine outputs an infinite stream with only finitely many 0 s, during an infinite computation. In [BFGM06, BG07] such numbers are obtained as probabilities that a universal prefixfree machine outputs a string that belongs to a complicated set. For example, in [BFGM06] the numbers

$$
\begin{equation*}
\Omega[X]=\sum_{U(\sigma) \in X} 2^{-|\sigma|} \tag{1.5}
\end{equation*}
$$

were studied where U is a universal prefix-free machine and X is a given set. This work was extended in [BG07] where it was shown that for each $n \geq 1$ the number in (1.5) is n-random whenever X is partial many-one Σ_{n}^{0}-complete. ${ }^{2}$

However one may argue that the above examples of highly random numbers are not entirely 'natural', as they directly depend on auxiliary sets that are well known to have high complexity from computability theory (via diagonalization arguments). In this paper we provide a natural example of a highly random number (random relative to $\emptyset^{(3)}$) which directly reflects a probability of a universal machine related with universality and does not depend on external parameters. Moreover, as we explain in Section 1.4, it was originally defined by C.S. Wallace without the intention of exhibiting a random number (he believed it was zero).
1.3. Universality variations for prefix-free machines. The notion of universal machine in Kolmogorov complexity was defined in Section 1.1. However, there is more than one way to define it and not all of them are equivalent. In this section we give two standard notions of universality, a strong one and a weaker one, and discuss their differences. At this point our discussion becomes more mathematical, so let us clarify the terminology and notations that we use. By 'machine' we mean Turing machine with domain a subset of the set $2^{<\omega}$ of finite binary strings. The output of the machines is also a subset of $2^{<\omega}$. If M, N are two machines then we write $M(\sigma)=N(\tau)$ if either both $M(\sigma)$ and $N(\tau)$ converge to the same value, or both of them diverge. We use \subseteq to denote the prefix relation on strings (as well as the subset relation, when the variables range over sets).

The standard way to define a universal prefix-free machine is to make it simulate any other machine via a constant overhead. The standard example is the machine $U\left(0^{e} 1 \sigma\right)=M_{e}(\sigma)$ where $\left(M_{e}\right)$ is an effective enumeration of all prefix-free machines. Machines with this property will be called simply universal from now on. Moreover the operation of concatenation on strings will often be denoted by ' $*$ '.

Definition 1.1 (Universality). A prefix-free machine U is called universal if for each prefix-free machine M there is a string τ such that $M(\sigma)=U(\tau * \sigma)$ for all strings σ.

Occasionally, a more general notion of universality is used in Kolmogorov complexity, which is the one we mentioned in Section 1.1. This is when we merely require the simulation to take place with at most a constant overhead. This turns out to be an essential requirement for a machine to be called universal. Indeed, let K_{V} denote the prefix-free complexity with respect to machine V. In Kolmogorov complexity, a basic requirement for an underlying prefix-free machine U (with respect to which we measure the complexity of strings) is that for each prefix-free machine M there exists a constant c such that $K_{U}(\sigma) \leq K_{M}(\sigma)+c$ for all strings σ. Such machines are often called '(additively) optimal' (e.g. see [LV97, Definition 2.0.1]) since, modulo a constant, they produce the shortest descriptions compared to any other prefix-free machine. An equivalent way to express this property is as follows.

Definition 1.2 (Weak universality). A prefix-free machine U is called weakly universal if for each prefix-free machine M there is a constant c such that, for each string σ we have $M(\sigma)=U(\tau)$ for some string τ with $|\tau| \leq|\sigma|+c$.

[^2]In some papers, e.g. in [FSW06, Definition 1], universal machines are called universal by adjunction, reserving the term 'universal' for weakly universal machines in terms of Definition 1.2. The easiest way to produce a weakly universal prefix-free machine is to make it universal. However not all weakly universal machines are universal. In fact sometimes this distinction matters, as it does in various results in [FSW06].

In our paper we deal with both notions of universality, but the case of weak universality tends to be less interesting (with respect to the notions that we study). Indeed, as we see in Section 2 the notion of universality probability - the main object of study in this paper-becomes less robust when it is considered with respect to weakly universal machines. Moreover the question of C.S. Wallace that motivated this work (see Section 1.4) referred to the stronger notion of universality. For these reasons we are mainly concerned with the notion of Definition 1.1.
1.4. Universality probability of a machine and a question of C.S. Wallace. Chris Wallace was a physicist and a statistician in Monash university who developed a strong interest in information theory and in particular the minimum message length ($M M L$) approach to the complexity of programs, inductive inference and learning theory. His work on this topic, much of which is discussed in his book [Wal05], was heavily influenced by ideas and methods in statistics. See [Dow08] for a survey of Wallace's work as well as [WD99] for a comparison of MML with Kolmogorov complexity.

Wallace was interested in the notion of a real preserving universality with respect to a prefix-free machine, and in particular the probability of this event (see [Dow08, Section 0.2.2, Page 530, Column 1 and Footnote 70] and [Dow11, Section 2.5, Page 913]).
Definition 1.3 (Preserving universality). A real X preserves [weak] universality with respect to a prefix-free machine M, if all machines $M_{n}(\sigma):=M(X \upharpoonright n * \sigma)$, $n \in \mathbb{N}$ are [weakly] universal.

The universality probability of a prefix-free machine M is the measure of the reals that preserve universality with respect to M. Clearly if M is not universal, it has universality probability 0 . In Section 2 we will see that the converse is also true.

The philosophical motivation of Wallace for considering these notions was his intuition that (vaguely speaking)

> as an individual accumulates information, with probability 1 he eventually loses 'universality'.

In other words, he believed that the universality probability of any machine is 0 . This conjecture was the starting point and the main motivation for this project. In Section 2 we refute it, showing that for a universal machine it is always a number strictly between 0 and 1 . After this basic result was obtained, we wished to obtain various logical and computational properties of these numbers like their arithmetical complexity and their Turing degree. Ultimately, we characterized them as the reals which are random relative to $\emptyset^{(3)}$ and right c.e. relative to the same oracle. Based on this main result and various results from the literature we calculated the exact place of these numbers in the arithmetical hierarchy of complexity and showed that their Turing degrees vary with the choice of the underlying universal prefix-free machine. The latter corollary contrasts with the fact that the halting probabilities of universal prefix-free machines all have the same Turing degree (the degree of
the halting problem). These results are stated in detail in Section 3 and the more technical arguments are deferred until Section 4 and Section 5.

The characterization of universality probabilities has the same spirit as the characterization of halting probabilities from [Sol75, CHKW01, KS01] that we discussed in Section 1.2. In fact, in a certain sense, the two probabilities are complementary as we show in Section 3 (Corollary 3.5). Moreover the characterization of universality probabilities is considerably harder to obtain than the case of halting probabilities since we deal with 4 -quantifier complexity as opposed to the 1-quantifier complexity of the halting probabilities. The additional obstacles stem from the fact that this notion does not have counterparts in lower arithmetical levels and this lack of inductive structure forces us to work directly on the computable level with the aim of meeting conditions on the fourth level of arithmetical complexity (instead of transferring a simpler argument of a lower level to the fourth level by the use of parameters and an inductive step). As consequence, the main argument of Section 4 does not involve oracle computations. The specific novelties and obstacles to this argument are detailed throughout Section 4. Note, however, that oracle computations are used in Sections 3 and 5 in order to derive further properties of the universality probabilities, from the main result and a wealth of results from the literature. Moreover, the techniques used in the easier case of halting probabilities are fully utilized in our arguments.

2. Basic properties of universality probability

It will be useful to discuss the complexity of the class of reals which preserve [weak] universality (with respect to some machine M). Notice that if M is not universal, then this class is empty. Let $\left(V_{e}\right)$ be a standard list of all prefix-free machines. The number e is said to be an index of the machine V_{e}. Notice that we use natural numbers to index machines, instead of strings. Let $P(e, n, \tau, \sigma, s)$ be the computable predicate that $V_{e}(\tau * \sigma)[s]=V_{n}(\sigma)[s]$ (where the suffix $[s]$ indicates the state of the machine after it has performed s steps). Then the property that machine e is universal can be expressed by the Π_{4}^{0} predicate $\forall n \exists \tau \forall \sigma, t \exists s>t, P(e, n, \tau, \sigma, s)$. Similarly, the property that machine e is weakly universal can be expressed by the Π_{4}^{0} predicate $\forall n \exists c \forall \sigma, t \exists s>t, \tau[|\tau| \leq|\sigma|+c \wedge P(e, n, \tau, \sigma, s)]$. However the variables in P are not entirely 'independent' (e.g. if $V_{e}(\tau) \downarrow$ this affects P on all variables σ). For this reason the set of indices of [weakly] universal machines has lower complexity.

Proposition 2.1 (Folklore). The set of indices of the [weakly] universal prefix-free machines is Σ_{3}^{0}-complete.

Proof. Let P be as in the discussion above and let n be the index of a fixed universal machine. Then the programs e that can simulate any other program (in the sense of Definition 1.1) are exactly the ones that can simulate V_{n}. Hence V_{e} is universal if and only if

$$
\begin{equation*}
\exists \tau \forall \sigma, t \exists s>t, P(e, n, \tau, \sigma, s) \tag{2.1}
\end{equation*}
$$

Therefore they form a Σ_{3}^{0} set. Similarly, the programs e that can weakly simulate any other program (in the sense of Definition 1.2) are exactly the ones that can weakly simulate V_{n}. Hence V_{e} is weakly universal if and only if

$$
\begin{equation*}
\exists c \forall \sigma, t \exists s>t, \tau[|\tau| \leq|\sigma|+c \wedge P(e, n, \tau, \sigma, s)] \tag{2.2}
\end{equation*}
$$

Therefore they too form a Σ_{3}^{0} set.
In order to show that (2.1) and (2.2) are Σ_{3}^{0}-complete, let $Q(e, t, k, s)$ be a computable relation such that the predicate $\exists t \forall k \exists s Q(e, t, k, s)$ is Σ_{3}^{0}-complete. Let $\left(\tau_{i}\right)$ be an infinite computable prefix-free sequence of strings. Then for each e we can make a program $f(e)$ such that

$$
\begin{equation*}
\forall \sigma V_{f(e)}\left(\tau_{t} * \sigma\right)=V_{n}(\sigma) \Longleftrightarrow \forall k \exists s Q(e, t, k, s) \tag{2.3}
\end{equation*}
$$

for each $t \in \mathbb{N}$ and all strings in the domain of $V_{f(e)}$ extend some $\tau_{i}, i \in \mathbb{N}$. This is simply done by expressing the Π_{2}^{0} predicate $\forall k \exists s Q(e, t, k, s)$ as the limsup of a computable function g with binary values, and updating the $V_{f(e)}$-simulation of V_{n} on extensions of τ_{t} at stages s where $g(s)=1$. By (2.3) (and the fact that all $V_{f(e)}$-computations are enumerated on strings that are prefixed by some $\tau_{i}, i \in \mathbb{N}$) we have that

$$
\begin{aligned}
\exists t \forall k \exists s Q(e, t, k, s) & \Longleftrightarrow \exists \tau \forall \sigma, t \exists s>t, P(f(e), n, \tau, \sigma, s) \\
& \Longleftrightarrow \exists c \forall \sigma, t \exists s>t, \tau[|\tau| \leq|\sigma|+c \wedge P(f(e), n, \tau, \sigma, s)]
\end{aligned}
$$

Since f is computable it follows that the predicates in (2.1) and (2.2) are Σ_{3}^{0} complete.

The proof of Proposition 2.1 may be useful to some readers as an introduction to the spirit of the main arguments in Sections 4 and 5.

It is not hard to see that the class of reals which preserve [weak] universality (with respect to some machine M) can be represented as the class of infinite paths through a $\emptyset^{(3)}$-computable tree T. Indeed, let N be a universal prefix-free machine and let

$$
\begin{equation*}
\sigma \in T \Longleftrightarrow \exists \tau \forall \rho, t \exists s>t, M(\sigma * \tau * \rho)[s]=N(\rho)[s] \tag{2.4}
\end{equation*}
$$

Clearly T is a tree (i.e. a downward closed set of strings) and since the Σ_{3}^{0} predicate in the second clause of the equivalence in (2.4) is computable from $\emptyset^{(3)}$, it is computable from this oracle. Moreover, by definition, a real preserves universality with respect to M if and only if it is a path through T. Similar observations apply for the case of weak universality. Therefore we have the following.

The class of reals which preserve [weak] universality with respect to a machine M is a $\Pi_{1}^{0}\left(\emptyset^{(3)}\right)$ class.
In this paper we are mainly interested in the measure of the class of (2.5), in the non-trivial case when M is a universal machine. We will first show that this measure is always positive and then that it is always a 4 -random number (i.e. random relative to $\left.\emptyset^{(3)}\right)$. The case of weak universality turns out to be less robust and less interesting.

Proposition 2.2. There exists a weakly universal machine V which does not preserve weak universality with respect to any real.

Proof. Let U be a universal machine. For each string σ, if $U(\sigma)=\tau$ let $V(j * \sigma)=\tau$ where j is 0 or 1 according to whether $|\tau|$ is even or odd respectively. Clearly V is weakly universal. However for each non-empty string ρ the machine $M_{\rho}(\sigma):=$ $V(\rho * \sigma)$ is not weakly universal. Indeed, if the first digit of ρ is 1 then M_{ρ} only gives descriptions to strings of odd length. Similarly if the first digit of ρ is 0 then it only gives descriptions to strings of even length. This shows that no real preserves weak universality with respect to V.

On the other hand Theorem 2.4 below shows that some machines preserve (weak) universality with respect to a set of reals of positive measure. Our last comment about weak universality is in Lemma 3.2, where we show that for some machines V the measure of reals which preserve weak universality with respect to V is 4 -random. From now on, we focus on the case of universality (in the sense of Definition 1.1).
Definition 2.3 (Universality probability). The [weak] universality probability of M, denoted by P_{M} [denoted by P_{M}^{w}], is the measure of all reals which preserve [weak] universality with respect to M.

A related notion is the halting probability Ω_{M} of a machine M which was introduced by Chaitin in [Cha75]. In order to draw an analogy with Definitions 1.3 and 2.3, we say that a prefix-free machine M halts on a real X if it halts on some initial segment of X. Then Ω_{M} is the measure of all reals X on which the machine M halts and is expressed formally as $\Omega_{M}=\sum_{M(\sigma) \downarrow} 2^{-|\sigma|}$. If U is a universal machine then clearly $\Omega_{U}>0$. Also $P_{U}^{w} \leq 1-\Omega_{U}$ since if U halts on some input, no real extending that input can preserve universality. Hence $P_{U}^{w}<1$ for every universal machine U. We wish to show that we also have $P_{U}>0$ and $P_{U}^{w}>0$. It suffices to construct a universal machine V such that $P_{V}>0$. Indeed, then we argue that $P_{U}>0$ (hence $P_{U}^{w}>0$) as follows. Since U is universal, there is some τ such that $V(\sigma)=U(\tau * \sigma)$ for all strings σ. Then for every X which preserves universality with respect to V, the sequence $\tau * X$ preserves universality with respect to U. Therefore, $P_{U} \geq 2^{-|\tau|} \cdot P_{V}>0$. The proof of the following theorem sets the basis for the more complex arguments of Sections 4 and 5.
Theorem 2.4. The universality probability of any universal machine is strictly between 0 and 1.

Proof. As we explained above, for the proof of the theorem it suffices to construct a universal machine V such that $P_{V}>0$. In order to achieve this we will enumerate a Σ_{1}^{0} class Q of measure <1, such that every real in the Π_{1}^{0} class $2^{\omega}-Q$ preserves universality by adjunction (with respect to V). Obviously, Q will contain the domain of V, i.e. the sequences on which V halts.

Let U be a universal prefix-free machine. The machine V will be constructed through an iteration of U on various cylinders $[\sigma]:=\left\{X \in 2^{\omega} \mid \sigma \subset X\right\}$. In what follows we identify strings σ with the corresponding basic open sets $[\sigma]$ of the Cantor space 2^{ω}. Also, we identify sets $Q[s]$ of strings with the corresponding open sets of the space, consisting of the sequences extending one of the strings in $Q[s]$. Let $Q[0]=\emptyset$.

Construction. At stage $s+1$ consider the set $C[s]$ of strings σ of length s such that $[\sigma] \nsubseteq Q[s]$. For each $\sigma \in C[s]$ do the following. Find a string τ of length $>2 s+2$ extending σ which has no prefix in $Q[s]$. Let $V(\tau * \rho):=U(\rho)$ for all strings ρ. Put τ in $Q[s+1]$.

Verification. First, note that the sets $Q[s]$ are clopen, therefore the string τ will always be found in the construction for each σ of length s such that $[\sigma] \nsubseteq Q[s]$. So the construction is well defined. Also, by the construction we have $V(\tau)[s] \downarrow$ for some string τ only if some prefix of τ is in $Q[s]$. Therefore the new definitions of V at each stage are enumerated in cylinders $[\sigma]$ where there is no previous convergence of V. So V is a consistent and prefix-free Turing machine.

Now let $Q:=\cup_{s} Q[s]$ and suppose that $X \in 2^{\omega}-Q$. Then by the construction we have $X \upharpoonright s \in C[s]$ for all $s \in \mathbb{N}$. Therefore X preserves universality with respect to V. It remains to show that $\mu(Q)<1$. Notice that $C[s]$ consists of at most 2^{s} strings at each stage s. By the way we choose the strings in $Q[s+1]$ from $C[s]$ (for each string of length s we choose at most one extension of it of length $2 s+2$) we have that $\mu(Q[s+1]-Q[s]) \leq 2^{-s-2}$. Since $Q=\cup_{s} Q[s]$ we have $\mu(Q)<1$.

In the proof of Theorem 2.4 we constructed a universal machine V and a Π_{1}^{0} class P of positive measure such that every real in P preserves universality with respect to V. If U is a universal machine, there exists τ such that $V(\sigma)=U(\tau * \sigma)$ for all strings σ. Therefore all reals in the Π_{1}^{0} class $P_{*}=\{\tau * X \mid X \in P\}$ preserve universality with respect to U. Moreover $\mu\left(P_{*}\right)=2^{-|\tau|} \cdot \mu(P)>0$ so we have the following.

Corollary 2.5. Given a universal machine U there exists a Π_{1}^{0} class P of positive measure such that all reals in P preserve universality with respect to U.

A result of Kučera [Kuč85] says that if P is a Π_{1}^{0} class of positive measure then every Martin-Löf random sequence has a final segment in P. Therefore we have the following consequence.

Corollary 2.6. If U is a universal prefix-free machine and X a Martin-Löf random sequence then some final segment of X preserves universality with respect to U.

In the proof of Theorem 2.4 by modifying the number $2 s+2$ in the construction we can clearly make sure that the measure of the class Q is arbitrarily small. Hence we can make sure that P_{V} is as close to 1 as we wish. Similarly, by choosing the domain of V to have suitably large measure, we can ensure that P_{V} is as close to 0 as we wish. Moreover recall that the machine V that is built is universal. Therefore we have the following consequence of the argument in the proof of Theorem 2.4.

Corollary 2.7. If U ranges over the universal prefix-free machines then we have $\sup _{U} P_{U}=1$ and $\inf _{U} P_{U}=0$.

Typical reals in the sense of Baire category are called generic. These are the sequences that meet every 'definable' dense set of strings. Various interpretations of 'definable' yield various levels of genericity. One of the weakest such notions is 1-genericity. A real X is 1 -generic if every Σ_{1}^{0} set of strings which is dense along X (i.e. X is an accumulation point of the neighbourhoods in the set) has a prefix of X. The following observation contrasts Corollary 2.6.

Proposition 2.8. If M is a prefix-free machine and X is a 1-generic real then X does not preserve universality with respect to M. Hence the set of reals that preserve universality with respect to a prefix-free machine is a meager set.

Proof. If a real X preserves universality with respect to M then the domain of M is a Σ_{1}^{0} set of strings which is dense along X. Moreover no prefix of X is in the domain of M. This means that in this case X cannot be 1-generic. Since the set of 1-generic reals is a comeager set, the set of reals that preserve universality with respect to M is meager.

An easy modification of the proof of Theorem 2.4 yields the following observation.

Proposition 2.9. Every computable real preserves universality with respect to some prefix-free machine V. Hence for every computable real X and any universal prefixfree machine U, some finite variation $\sigma * X$ of X preserves universality with respect to U.

On the other hand for each computable real X there exists a universal prefix-free machine U with respect to which X does not preserve (weak) universality.

The ideas presented in the proof of Theorem 2.4 will be used in the latter sections in order to obtain more advanced results on the universality probability. On the other hand, there is a simpler proof of it (and its corollaries) that was suggested to us by Leonid Levin.
Levin's example. Let U be a standard universal prefix-free machine and let c be a constant such that $\forall n K\left(X \upharpoonright_{n}\right) \geq n-c$ for some real X. Let N_{c} be the c.e. set of strings σ such that $K(\sigma) \leq|\sigma|-c$. Fix a computable enumeration of N_{c} in which at most one string is enumerated at each stage. Define a new machine M as follows. At stage $s+1$ set $M(\sigma * \tau)=U(\tau)$ for all τ unless there is some $\rho \in N_{c}[s]$ which is compatible with σ. It is not hard to check that M is well-defined and prefix-free. Since every string has extensions in N_{c}, every real X with no prefixes in N_{c} preserves universality. Hence M has positive universality probability.

The halting probability of a universal prefix-free machine Ω stands out as a rather special random number. One can obtain more highly random numbers by relativizing Ω. For example $\Omega^{\emptyset^{\prime}}$ (the halting probability of a universal prefix-free machine with oracle \emptyset^{\prime}) is random relative to \emptyset^{\prime}, i.e. 2 -random. There is another way to obtain highly random numbers through Ω, without relativization. Such methodologies were explored in [BC02, BFGM06, BG07]. For example, in [BFGM06] the numbers (1.5) were studied where U is a universal prefix-free machine and X is a given set. This work was extended in [BG07] where it was shown that for each $n \geq 1$ the number in (1.5) is n-random whenever X is partial many-one Σ_{n}^{0}-complete (see Footnote 2). In Section 3 we show that universality probabilities are natural examples of highly random numbers.

3. Randomness of universality probability

In this section we wish to show that the universality probability of a universal prefix-free machine is a random number. In fact, we will show that it is 4 -random, i.e. random relative to $\emptyset^{(3)}$. Following the methodology in the proof of Theorem 2.4, we construct a prefix-free machine V with special properties. For every string τ, let $[\tau]$ denote the class of infinite binary extensions of τ. If S is a set of strings, let $[S]$ denote the union of all $[\tau]$ for $\tau \in S$. Recall that open sets in the Cantor space are of the form $[S]$ for some set of strings S. If an open set can be represented by a computably enumerable set of strings then it is called Σ_{1}^{0}.

Lemma 3.1 (Special machines). Given any Σ_{4}^{0} set of strings $J, e \in \mathbb{N}$ there is a universal prefix-free machine V and a c.e. set of strings Q such that:
(a) A real in $2^{\omega}-[Q]$ preserves [weak] universality with respect to V if and only if it does not have a prefix in J.
(b) The measure of $[Q]$ is computable and at most 2^{-e}.
(c) the measure of the reals in $[Q]$ that preserve [weak] universality with respect to V can be $\emptyset^{(3)}$-approximated from above.

Moreover the programs for $V, Q, \mu(Q)$ can be effectively obtained from a Σ_{4}^{0} index of J and e.

The proof of Lemma 3.1 is the main technical argument needed for Theorem 3.3 and is presented in Section 4. The next lemma shows that the universality probability of one of the machines obtained in Lemma 3.1 is a 4 -random number.

Lemma 3.2 (Universality probability of a special machine). There is a prefix-free machine whose [weak] universality probability is random relative to $\emptyset^{(4)}$.

Proof. Let J be the second member of a universal Martin-Löf test relative to $\emptyset^{(3)}$, so that $\mu([J])<2^{-2}$ and every infinite sequence that is not 4 -random has a prefix in J. We show that the corresponding machine V of Lemma 3.1 for $e=2$ has the desired property. Let Q be the c.e. set that is produced as in Lemma 3.1. By the choice of J, e, V we have:
(i) there are reals in $2^{\omega}-[Q]$ that preserve universality with respect to V
(ii) every real in $2^{\omega}-[Q]$ that preserves (weak) universality with respect to V is 4 -random
(iii) the measure of the reals in $[Q]$ that preserve [weak] universality with respect to V can be $\emptyset^{(3)}$-approximated from above.
Recall that the measure of a Π_{1}^{0} class is a right-c.e. real and, similarly, the measure of a $\Pi_{1}^{0}(X)$ class (where X is some oracle) is a right-c.e. real relative to X. By [Nie09, Theorem 3.2.35] the measure of a Π_{1}^{0} class which contains only 1 -random reals is a 1 -random real. A direct relativization of this fact gives the following analogous result.

The measure of a $\Pi_{1}^{0}\left(\emptyset^{(3)}\right)$ class which contains only 4-random elements is a 4 -random and right-c.e. relative to $\emptyset^{(3)}$ real.
Since the class $[Q]$ is Σ_{1}^{0}, by (2.5) the class of reals in $2^{\omega}-[Q]$ that preserve [weak] universality with respect to V is a $\Pi_{1}^{0}\left(\emptyset^{(3)}\right)$ class. Then by item (ii) above and (3.1) we have (3.2).

The measure of the reals in $2^{\omega}-[Q]$ that preserve [weak] universality with respect to V is 4 -random and right-c.e. relative to $\emptyset^{(3)}$.
On the other hand, by [DH10, Theorem 8.7.2], the sum of a right-c.e. real with a 1 -random right-c.e. real is a 1 -random right-c.e. real. A direct relativization of this results shows (3.3).

The sum of a right-c.e. real relative to $\emptyset^{(3)}$ with a 4 -random right-c.e. real relative to $\emptyset^{(3)}$ is a 4-random right-c.e. real relative to $\emptyset^{(3)}$.
Hence it remains to show that the measure of the class of reals in $[Q]$ that preserve [weak] universality with respect to V is a right-c.e. real relative to $\emptyset^{(3)}$. But this is item (iii) above. Hence the [weak] universality probability of V is the sum of the number in (3.2) and a right-c.e. real relative to $\emptyset^{(3)}$. By (3.3) it is 4 -random and right-c.e. relative to $\emptyset^{(3)}$.
Note that in Lemma 3.1 it is not claimed that the class of reals in Q that preserve universality with respect to V is a Π_{4}^{0} class. In fact, this will be a Σ_{5}^{0} class but its measure will be merely right-c.e. relative to $\emptyset^{(3)}$ (see Section 4).
Theorem 3.3. The universality probability of a universal prefix-free machine is 4 -random and right-c.e. relative to $\emptyset^{(3)}$.

Proof. Consider the machine V of Lemma 3.2 with universality probability P_{V}. Given any universal machine U, there is a string τ such that $V(\rho)=U(\tau * \rho)$ for all strings ρ. Let \mathcal{C} be the class of reals that preserve universality with respect to U and for each string σ of length $|\tau|$ consider the class $\mathcal{C}_{\sigma}=\mathcal{C} \cap[\sigma]$. The measure of \mathcal{C}_{τ} is $2^{-|\tau|} \cdot P_{V}$, so by Lemma 3.2 it is a 4 -random right-c.e. relative to $\emptyset^{(3)}$ number. Moreover the classes \mathcal{C}_{σ} are $\Pi_{1}^{0}\left(\emptyset^{(3)}\right)$ so their measures are right-c.e. relative to $\emptyset^{(3)}$. The measure of \mathcal{C} is the finite sum of the measures of the classes \mathcal{C}_{σ} for the strings σ of length $|\tau|$. By (3.3) this is a 4-random right-c.e. relative to $\emptyset^{(3)}$ number.

We also wish to give a characterization of the real numbers that are the universality probability of some universal prefix-free machine. For the halting probabilities of universal prefix-free machines such a characterization is well known and was obtained by the cumulative work of several authors [Sol75, CHKW01, KS01] (for a simplified presentation we recommend [DH10, Section 9.2]).

A left-c.e. real is the halting probability of a universal prefix-free machine if and only if it is 1 -random.

By [DHMN05, Section 2] the above result relativizes to any oracle, so that the following holds for each $n \in \mathbb{N}$.

A left-c.e. real relative to $\emptyset^{(n)}$ is the halting probability of some universal oracle prefix-free machine operating with oracle $\emptyset^{(n)}$ if and only if it is ($\mathrm{n}+1$)-random.

In [KS01] it was also shown that for every right-c.e. 1-random real α there exists a Π_{1}^{0} class with measure α which contains only 1 -random reals. If we combine this with [Nie09, Theorem 3.2.35] (see the remarks above (3.1)) we get (3.6).

A right-c.e. real is the measure of a Π_{1}^{0} class which contains only 1 -random reals if and only if it is 1 -random.

If we had a version of Lemma 3.1 where $Q=\emptyset$ we could use a relativized version of (3.6) in order to obtain an analogue of the characterization (3.4) for universality probabilities. Unfortunately such a version of Lemma 3.1 would contradict Proposition 2.9. However we are able to obtain such a characterization using a less direct argument.

Theorem 3.4. A real number is the universality probability of a universal prefixfree machine if and only if it is right-c.e. relative to $\emptyset^{(3)}$ and 4-random.

The proof of Theorem 3.4 is presented in Section 5 and involves Lemma 3.1 as well as some techniques in [DH10, Section 9.2] (originally from [Sol75, CHKW01, KS01]) which were used to show (3.4).

In the following we use the main results that we discussed above in order to show that the non-universality probability of a universal prefix-free machine equals the halting probability of another universal prefix-free machine that operates with oracle $\emptyset^{(3)}$. Moreover, the converse holds as well. The halting probability of a universal prefix-free machine that operates with oracle $\emptyset^{(3)}$ equals the non-universality probability of another universal prefix-free machine (operating without an oracle). The reason for this coincidence is that 1-random left-c.e. reals are exactly the halting probabilities of universal prefix-free machines.

Corollary 3.5. For every universal prefix-free machine U there exists an oracle universal prefix-free machine V such that

$$
\begin{equation*}
P_{U}+\Omega_{V}^{\emptyset^{(3)}}=1 \tag{3.7}
\end{equation*}
$$

Conversely, for every oracle universal prefix-free machine V there exists a universal prefix-free machine U such that (3.7).

Proof. Let U be a universal prefix-free machine. By Theorem 3.3 the probability P_{U} is 4-random and right-c.e. relative to $\emptyset^{(3)}$. Hence $1-P_{U}$ is 4-random and left-c.e. relative to $\emptyset^{(3)}$. By (3.5) with $n=3$, there is a universal oracle prefix-free machine V such that $\Omega_{V}^{\emptyset^{(3)}}=1-P_{U}$. For the converse, let V be a universal oracle prefix-free machine. Then $1-\Omega_{V}^{\emptyset^{(3)}}$ is 4-random and right-c.e. relative to $\emptyset^{(3)}$. By Theorem 3.4 we can obtain a universal prefix-free machine U such that $P_{U}=1-\Omega_{V}^{\emptyset^{(3)}}$.

Corollary 3.5 says that, in a sense, universality probabilities are complementary to halting probabilities. The introduction of the parameter $\emptyset^{(3)}$ in the halting probability is necessary since there is a difference in the quantifier complexity of the two unrelativized probabilities.

We have enough information about the universality probability of a universal prefix-free machine U in order to determine its place in the arithmetical hierarchy of complexity. By Theorem 3.3 the number P_{U} is in Δ_{5}^{0}. Also it is not in Π_{4}^{0} because it is 4 -random. However since it is right-c.e. relative to $\emptyset^{(3)}$, it has Π_{4}^{0} degree.

Corollary 3.6. The universality probability of a universal prefix-free machine is Δ_{5}^{0} but not Π_{4}^{0}. However it has Π_{4}^{0} degree.
From Theorem 3.3 we can also derive some information about the degree of unsolvability of the universality probability of a universal prefix-free machine. The proof of Corollary 3.7 uses the following fact.
(3.8) If U is a universal oracle prefix-free machine then $\Omega_{U}^{\emptyset^{(3)}} \oplus \emptyset^{(3)} \equiv_{T} \emptyset^{(4)}$.

This is a relativized version of the fact that for every universal prefix-free machine M the halting probability Ω_{M} is in the same Turing degree as the halting problem.

Note that the class of oracles that compute a given Δ_{4}^{0} set is Σ_{5}^{0}. This is analogous to the fact that the class of oracles that compute a given Δ_{2}^{0} set is Σ_{3}^{0}. Moreover, since this class is null whenever the given set is noncomputable (by a classic result from [dLMSS55]), it follows that a 4-random oracle cannot compute any noncomputable Δ_{4}^{0} set (because 4 -random oracles are not members of null Π_{4}^{0} classes). We use this basic fact in the following proof.

Corollary 3.7. The degree of the universality probability of a universal prefix-free machine and $\mathbf{0}^{(3)}$ have supremum $\mathbf{0}^{(4)}$ and infimum $\mathbf{0}$.

Proof. Let U be a universal prefix-free machine. Then P_{U} has the same degree as $1-P_{U}$. By Corollary 3.5 the latter is equal to $\Omega_{V}^{\emptyset^{(3)}}$ for some universal oracle prefix-free machine V. Hence by (3.8) we have $P_{U} \oplus \emptyset^{(3)} \equiv_{T} \emptyset^{(4)}$. Moreover since P_{U} is 4-random it does not compute any non-computable Δ_{4}^{0} set. Hence it does not compute any non-computable set that is computed by $\emptyset^{(3)}$. Hence the degrees of P_{U} and $\emptyset^{(3)}$ form a minimal pair.

The Turing degree of the halting probability Ω_{U} does not depend on the choice of the underlying universal machine U. Indeed, it always coincides with the degree
of the halting problem. However this may not be the case when we give U access to an oracle A. This issue was investigated in [DHMN05], where the following characterization was obtained.

The Turing degree of Ω_{U}^{A} is invariant to the choice of the underlying universal machine U if and only if A is K-trivial.
This fact is explicitly mentioned in the introductory section of [DHMN05] and is a consequence of the results in Sections 4 and 8 of [DHMN05]. We note that the machines involved in these proofs are universal in the sense of Definition 1.1 (and not merely weakly universal). Moreover it follows from their arguments that if A is not K-trivial then there exist two universal machines U, V such that the degrees of Ω_{U}^{A} and Ω_{V}^{A} are incomparable. We apply these results in order to show that the degree of the universality probability depends on the choice of the underlying universal prefix-free machine.

Theorem 3.8. There exist universal prefix-free machines U, V such that the Turing degrees of P_{U} and P_{V} are incomparable.

Proof. The set $\emptyset^{(3)}$ is not K-trivial. Hence by (3.9) (and the remarks below it) we can choose universal prefix-free machines M, N such that the degrees of $\Omega_{M}^{\emptyset^{(3)}}$ and $\Omega_{N}^{\emptyset^{(3)}}$ are incomparable. Then the same holds for the degrees of $1-\Omega_{M}^{\emptyset^{(3)}}$ and $1-\Omega_{N}^{\emptyset^{(3)}}$. These numbers are 4-random and right-c.e. relative to $\emptyset^{(3)}$. Hence by Theorem 3.4 we can choose universal prefix-free machines U, V such that $P_{U}=1-\Omega_{M}^{\emptyset^{(3)}}$ and $P_{V}=1-\Omega_{N}^{\emptyset^{(3)}}$. Hence U, V are as requested.

4. Proof of Lemma 3.1

We will build on the ideas behind the proof of Theorem 2.4. A set of strings is called upward closed if for any string in the set, all of its extensions are in the set. Notice that the conditions in Lemma 3.1 hold for J if and only if they hold for the upward closure of J (i.e. the union of J with all extensions of strings in J). Hence it suffices to prove Lemma 3.1 for the special case when J is upward closed.

Let U be a universal prefix-free machine, $e \in \mathbb{N}$ and let J be an upward closed Σ_{4}^{0} set of strings. The set Q plays the same role in both proofs. It consists of the strings above which we choose to simulate U. In the proof of Theorem 2.4, each string σ such that $[\sigma]$ was not contained in the Σ_{1}^{0} class generated by Q at stage $|\sigma|+1$ of the enumeration of Q, was associated with an extension τ on which we simulated U (i.e. we set $V(\tau * \rho)=U(\rho)$ for each string ρ). This ensured that any real that is not prefixed by a string in Q preserves universality with respect to V. By ensuring that the measure of the Σ_{1}^{0} class induced by Q is small, we proved Theorem 2.4.

In this section we will extend this idea so that we meet the more complex requirement stated in Item (a) of Lemma 3.1. As it was the case in the proof of Theorem 2.4, we do not care about which reals with a prefix in Q preserve universality with respect to V. Instead, we focus on which reals in $2^{\omega}-[Q]$ preserve universality.

The less the complexity of J is, the easier it is to satisfy Item (a) of Lemma 3.1. For example, if it was a Σ_{1}^{0} set of strings, it is easy to modify the construction in Theorem 2.4 so that Item (a) is met (at least for the main notion of universality). All we need to do is proceed as before, but when a real in $2^{\omega}-[Q]$ is found to have a prefix in J, we stop any simulations of U on strings that extend that prefix. By
ensuring that $\mu([Q])<2^{-4}$ we have that $2^{\omega}-[Q]-[J] \neq \emptyset$. The situation when J is Σ_{2}^{0} is quite similar, where instead of stopping a simulation we merely pause it. In order to deal with the real case of J being Σ_{4}^{0} we still associate each string σ which is not in Q with an extension of it τ, but we do not run a single simulation above τ. Instead, we run infinitely many simulations above countably many extensions of τ (say, $\tau 0^{n} 1$ for $n \in \mathbb{N}$). Each of these simulations may succeed or not, according to our guesses about whether σ is in J.

The following is a recursive definition of Q and the map f which assigns some strings to an extension of them where simulations of U may occur. Recall that e is a given parameter in the statement of Lemma 3.1.

Definition of Q and f. At stage $s+1$, do the following for each string σ of length s. If σ has an extension which is incomparable with all strings in $Q[s]$ (i.e. $[\sigma] \nsubseteq[Q[s]]$), let $f(\sigma)$ be such an extension of length $>2 s+e+1$ and enumerate $f(\sigma)$ into Q.

Notice that $Q=\left\{f(\sigma) \mid \sigma \in 2^{\omega} \wedge f(\sigma) \downarrow\right\}$ and Q is a prefix-free set of strings. Moreover since $|f(\sigma)|>2|\sigma|+e+1$ for all σ such that $f(\sigma) \downarrow$ we have

$$
\begin{equation*}
\mu(Q) \text { is computable and at most } \sum_{n} 2^{n} \cdot 2^{-2 n-e-1}=2^{-e} . \tag{4.1}
\end{equation*}
$$

By construction, if $X \notin[Q]$ then $f\left(X \upharpoonright_{n}\right) \downarrow$ for all $n \in \mathbb{N}$. Also, f is partial computable and it is decidable whether it converges on a given argument. Next, we give a canonical representation of upward closed Σ_{4}^{0} sets of strings.

Lemma 4.1. Let F be an upward closed Σ_{4}^{0} set of strings. Then there exists a computable predicate G such that
(i) $\sigma \in F \Longleftrightarrow \exists i \forall j \exists k \forall t G(\sigma, i, j, k, t)$
(ii) $\forall j \exists k \forall t G\left(\sigma, i_{0}, j, k, t\right) \Rightarrow \forall \tau \supseteq \sigma\left[\forall j \exists k \forall t G\left(\tau, i_{0}, j, k, t\right)\right]$
for all strings σ and numbers i_{0}.
Proof. Since F is Σ_{4}^{0}, there is a computable predicate H such that

$$
\begin{equation*}
\sigma \in F \Longleftrightarrow \exists i \forall j \exists k \forall t H(\sigma, i, j, k, t) \tag{4.2}
\end{equation*}
$$

for each string σ. Let G be a computable predicate such that for each $i \in \mathbb{N}$ and each string σ

$$
\begin{equation*}
\forall j \exists k \forall t G(\sigma, i, j, k, t) \Rightarrow \bigvee_{x=0}^{|\sigma|} \forall j \exists k \forall t H\left(\sigma \upharpoonright_{x}, i, j, k, t\right) . \tag{4.3}
\end{equation*}
$$

Such a predicate G exists because the second clause of (4.3) is Π_{3}^{0}. Indeed, let $(y)_{n}$ denote the exponent of the nth prime in the unique prime decomposition of y. The second clause of (4.3) holds exactly when $\forall y, j\left[\bigvee_{n=0}^{|\sigma|} \exists k \forall t H\left(\sigma \upharpoonright_{(y)_{n}}, i, j, k, t\right)\right]$. This is a Π_{3}^{0} predicate because the predicate inside the brackets is $\emptyset^{(2)}$-computable.

The right implication of item (i) of the lemma follows from the definitions (4.2) and (4.3). The left implication follows from these and the additional assumption that F is upward closed. Finally, it follows from (4.3) that the predicate G satisfies property (ii) in the lemma.

Let us fix G to be a computable predicate as in Lemma 4.1 for $F:=J$. The following technical notion is rather standard in computability theory.

Definition 4.2 (Expansionary stages of Π_{2}^{0} statements). Let $\forall i \exists j H(i, j)$ be a Π_{2}^{0} statement (where H is computable). Also let $\ell[s]$ be the largest $k \leq s$ such that $\forall i<k \exists j \leq s H(i, j)$ (if such k does not exist, let $\ell[s]=0$). We say that 'stage's is expansionary for the predicate if $\ell[s]>\ell[t]$ for all $t<s$.

The point of Definition 4.2 is that a Π_{2}^{0} statement is true if and only if it has infinitely many expansionary stages. This is sometimes called Π_{2}^{0}-approximation of the truth of the statement.

Definition 4.3 (Simulation of machines with overhead). We say that a machine N successfully simulates another machine U with overhead a string σ if $N(\sigma * \rho)=$ $U(\rho)$ for all strings ρ. Also, N successfully simulates U above τ if it successfully simulates U with overhead an extension of τ.

In Definition 4.3 we talk about 'successful' simulation to refer to the eventual outcome of a step-by-step procedure (and distinguish this case from the case when the simulation stops after finitely many steps). The following construction of the machine V is designed so that the following requirement is met.

For each string σ, if $f(\sigma)$ is defined then V successfully simulates U with overhead $f(\sigma) * 0^{j} 1$ if and only if $\forall k \exists t \neg G(\sigma,|\sigma|, j, k, t)$.

In fact the following more general requirement will be met.
For each string σ, if $f(\sigma)$ is defined then V successfully simulates U above $f(\sigma)$ if and only if $\exists j \forall k \exists t \neg G(\sigma,|\sigma|, j, k, t)$.

The following 'weak universality' version will also be met.
For each string σ, if $f(\sigma)$ is defined then the machine $\rho \mapsto V(\sigma * \rho)$ is weakly universal if and only if $\exists j \forall k \exists t \neg G(\sigma,|\sigma|, j, k, t)$.

This stronger statement will enable us to show the version of Item (a) of Lemma 3.1 that refers to weak universality.
4.1. Construction of V. At stage $s+1$ do the following for each string of length $\leq s$ such that $f(\sigma)$ is defined and each $j \leq s$. If $s+1$ is an expansionary stage for $\forall k \exists t \neg G(\sigma,|\sigma|, j, k, t)$ then let $V\left(f(\sigma) * 0^{j} 1 * \rho\right)[s+1]=U(\rho)[s]$ for all strings ρ of length $\leq s$.
4.2. Verification. First we prove some basic properties of the construction of machine V and then we verify the properties (a), (b), (c) of Lemma 3.1.

The construction of V is computable since f is partial computable and it is decidable whether it converges on a given argument. Hence Q is a Σ_{1}^{0} class. Also all the computations have the form ' $V\left(f(\sigma) * 0^{j} 1 * \rho\right)=U(\rho)$ ' where σ, ρ are strings and $j \in \mathbb{N}$. Since the set $Q=\left\{f(\sigma) \mid \sigma \in 2^{\omega} \wedge f(\sigma) \downarrow\right\}$ is prefix-free, the machine V is prefix-free. Moreover given the Σ_{4}^{0} definition of a set of strings one can compute a Σ_{4}^{0} definition of its upward closure. Furthermore, the canonical representation of Lemma 4.1 can be computed from the given Σ_{4}^{0} definition of the set of strings. Hence V and Q are effectively obtained from the given $e \in \mathbb{N}$ and a Σ_{4}^{0} index of J.

Verification of (4.4), (4.5) and (4.6). Suppose that $f(\sigma)$ is defined and fix $j \in \mathbb{N}$. If $\forall k \exists t \neg G(\sigma,|\sigma|, j, k, t)$, the statement $\forall k \exists t \neg G(\sigma,|\sigma|, j, k, t)$ will have infinitely many expansionary stages. Hence $V\left(f(\sigma) * 0^{j} 1 * \rho\right)=U(\rho)$ for all string ρ such that $U(\rho)$ is defined and V simulates U with overhead $f(\sigma) * 0^{j} 1$. On the other hand if $\exists k \forall t G(\sigma,|\sigma|, j, k, t)$ the simulation of U above $f(\sigma) * 0^{j} 1$ will stop at some stage. Hence V does not simulate U with overhead $f(\sigma) * 0^{j} 1$ and this concludes the proof of (4.4).

For (4.5), suppose that $f(\sigma)$ is defined. If $\exists j \forall k \exists t \neg G(\sigma,|\sigma|, j, k, t)$, by (4.4) V simulates U above $f(\sigma)$. Otherwise by (4.4) each simulation of U above $f(\sigma)$ will terminate at some stage. More precisely, for each $j \in \mathbb{N}$ the simulation of U with overhead $f(\sigma) * 0^{j} 1$ will stop at some stage which depends on j. Hence for each $j \in \mathbb{N}$, the domain of V restricted to strings which extend $f(\sigma) * 0^{j} 1$ is finite. Moreover these are the only V-computations that are enumerated for strings extending $f(\sigma)$ so (4.5) holds.

For (4.6) it suffices to show that if $f(\sigma) \downarrow$ and $\exists k \forall t G(\sigma,|\sigma|, j, k, t)$ then the machine $\rho \mapsto V(\sigma * \rho)$ is not weakly universal. Indeed, let c be a constant and consider a stage s_{0} after which no V-computations are enumerated for strings extending $0^{i} 1, i \leq c$. Also let τ be a string that receives its first U-description after stage s_{0}. This exists since only finitely many U-computations exist by stage s_{0}. By the choice of stage s_{0} and the definition of V, the length of the shortest V-description of τ (if that exists) will be at least $c+1$ bits longer than its shortest U-description. Hence the machine $\rho \mapsto V(\sigma * \rho)$ is not weakly universal with constant c and this concludes the proof of (4.6).

Verification of Item (a) of Lemma 3.1 (for universality and weak universality). Let $X \in 2^{\omega}-[Q]$. By the construction, $f\left(X \upharpoonright_{n}\right)$ is defined for all $n \in \mathbb{N}$. Assume that X does not have a prefix in J. Then for all $n \in \mathbb{N}$ we have $\forall i \exists j \forall k \exists t \neg G\left(X \upharpoonright_{n}\right.$ $, i, j, k, t)$. In particular, $\exists j \forall k \exists t \neg G\left(X \upharpoonright_{n}, n, j, k, t\right)$ for all $n \in \mathbb{N}$. By (4.5) the real X preserves universality with respect to V. Now assume that some prefix $X \upharpoonright_{n}$ of X is in J. Then $\exists i \forall j \exists k \forall t G\left(X \upharpoonright_{n}, i, j, k, t\right)$. Let i_{0} be a number such that $\forall j \exists k \forall t G\left(X \upharpoonright_{n}, i_{0}, j, k, t\right)$. By the choice of G (based on Lemma 4.1), for all $m>\max \left\{i_{0}, n\right\}$ and all $\rho \supseteq X \upharpoonright_{m}$ we have $\forall j \exists k \forall t G(\rho, m, j, k, t)$. By (4.5) it follows that V does not successfully simulate U at any $f(\rho)$ for $\rho \supseteq X \upharpoonright_{m}$. Consider $t>m$ such that $X \upharpoonright_{t}$ is longer and incomparable with all $f(\tau)$ for $\tau \subseteq X \upharpoonright_{m}$. Such t exists because $X \in 2^{\omega}-[Q]$. Then for all $\tau \supset X \upharpoonright_{t}$ the machine V is not universal with overhead τ. Indeed, if $[\tau] \subseteq[Q]$ then it holds by the choice of m, t and (4.5). Otherwise V does not enumerate any definitions extending τ, so it trivially holds. Hence X does not preserve universality and this completes the proof of Item (a) for the stronger version of universality. The same argument becomes a proof of the weak universality version of Item (a) if instead of (4.5) we use (4.6).

Verification of Items (b),(c) of Lemma 3.1. Item (b) was already shown in (4.1). For Item (c) let S be the set of strings σ such that V successfully simulates U with overhead σ. These are exactly the strings of the form $f(\tau) * 0^{j} 1$ for some string τ, such that $\forall k \exists t \neg G(\tau,|\tau|, j, k, t)$. Since Q is prefix-free (by the remark above (4.1)) it follows that S is prefix-free. By (4.4) and the fact that f is (partial) computable, the set S is computable in $\emptyset^{(2)}$.

If a real in $[Q]$ preserves universality then either it is of the form $f(\sigma) * 0^{\omega}$ for some string σ with $f(\sigma) \downarrow$ or it has a prefix in S. Indeed, if it is an extension of some $f(\tau)$ and it is not $f(\tau) * 0^{\omega}$ then it extends some $f(\tau) * 0^{j} 1$ for some $j \in \mathbb{N}$. If $f(\tau) * 0^{j} 1$ is not in S then V will only enumerate finitely many computations on arguments that extend $f(\tau) * 0^{j} 1$. Hence no real extending $f(\tau) * 0^{j} 1$ preserves universality. Moreover notice that since Q (i.e. the range of f) is prefix-free we have

$$
\mu\left(\left\{f(\sigma) * 0^{\omega} \mid f(\sigma) \downarrow\right\}\right)=0
$$

Hence if we let \mathcal{U} denote is the set of reals that preserve universality with respect to V we have

$$
\mu(\mathcal{U} \cap[Q])=\mu\left(\bigcup_{\sigma \in S} \mathcal{U} \cap[\sigma]\right) .
$$

But if $\sigma \in S$ then $\mu(\mathcal{U} \cap[\sigma])=2^{-|\sigma|} \cdot P_{U}$. Hence

$$
\begin{equation*}
\mu(\mathcal{U} \cap[Q])=P_{U} \cdot \sum_{\sigma \in S} 2^{-|\sigma|}=P_{U} \cdot \mu(S) \tag{4.7}
\end{equation*}
$$

Since $[S]$ is a $\Sigma_{1}^{0}\left(\emptyset^{(2)}\right)$ class, its measure is computable in $\emptyset^{(3)}$. Since P_{U} is a rightc.e. real relative to $\emptyset^{(3)}$, the measure of $\mathcal{U} \cap[Q]$ is a right-c.e. real relative to $\emptyset^{(3)}$. This concludes the proof of Item (c) of Lemma 3.1.

5. Proof of Theorem 3.4

By Theorem 3.3 (which is a consequence of Lemma 3.1) it suffices to show that given any 4 -random real $\alpha<1$ that is right-c.e. relative to $\emptyset^{(3)}$ there exists a prefixfree machine with universality probability α. Let α be a such a real. By (3.5) let $\alpha=1-\Omega_{N}^{\emptyset^{(3)}}$ for some universal oracle prefix-free machine N. By Definition 1.1 there exists a string ρ such that if M_{e} is an effective list of all (oracle) prefix-free machines then

$$
\begin{equation*}
N^{X}\left(\rho * 0^{e} 1 * \sigma\right)=M_{e}^{X}(\sigma) \text { for all } e \in \mathbb{N}, \text { all oracles } X \text { and all strings } \sigma . \tag{5.1}
\end{equation*}
$$

We will use a fixed point of the algorithm provided by Lemma 3.1 in order to produce J such that $Q \subseteq J$ and a suitable machine V with universality probability α.

Let $\left(\Psi_{e}\right)$ be an effective list of all functionals which output rational numbers in $[0,1]$. Also let $\left(\Phi_{e}\right)$ be an effective list of all functionals which output natural numbers. An index of a left-c.e. real β is a program e such that $\left(\Psi_{e}(i)\right)$ is an increasing sequence of rationals converging to β. Similar definitions apply to the indices of right-c.e. reals as well as right c.e. reals relative to an oracle X. The following fact is a version of [DH10, Proposition 9.2.1].

Given a left-c.e. index of a non-negative real $\beta<1$ we can compute a constant c and a number t such that if $\beta<2^{-c}$ then t is a left-c.e. index of $\Omega_{N}-\beta$.

Proof of (5.2). Given β we may construct a machine M and by the recursion theorem we may use an index e of M in its own definition. We make M so that the weight of its domain is the minimum of 1 and $2^{|\rho|+e+1} \cdot \beta$, where ρ is from (5.1). We set $c=2^{-e-1-|\rho|}$. Clearly if the input β is less than 2^{-c} then the weight of M will be exactly $2^{e+1+|\rho|} \cdot \beta$. Moreover by (5.1), every increase in the approximation
to β will correspond to a later increase in $\Omega_{N}-\beta$. Thus we have a computable approximation of $\Omega_{N}-\beta$ from below.
This fact can be relativized to any oracle and holds symmetrically for right-c.e. reals with a similar proof.

Given a right-c.e. relative to $\emptyset^{(3)}$ index of a real $0 \leq \beta<1$ we can compute a constant c and a number t such that if $\beta<2^{-c}$ then t is a right-c.e. relative to $\emptyset^{(3)}$ index of the real $1-\Omega_{N}^{\emptyset^{(3)}}-\beta$.
Notice that (5.3) not only says that $1-\Omega_{N}^{\emptyset^{(3)}}-\beta$ is a right-c.e. relative to $\emptyset^{(3)}$ real (provided that $\beta<2^{-c}$) but it also gives a way to compute a witness (an index) of this fact. The following is a formal way to write (5.3) which we will need for the application of the fixed-point theorem.

There are two computable functions c, t such that for every $e \in$ \mathbb{N}, if $\left(\Psi_{e}^{\emptyset^{(3)}}(i)\right)$ is a non-increasing sequence of rational numbers converging to $\beta<2^{-c(e)}$ then $\Psi_{t(e)}^{\emptyset^{(3)}}$ is a non-increasing sequence of rationals converging to $1-\Omega_{N}^{\emptyset^{(3)}}-\beta$.
We will also need the following program. Let $\left(W_{e}\right)$ be an effective enumeration of all oracle computable enumerations of sets of strings. Given an oracle X we say that e is an X-c.e. (or c.e. relative to X) index of the set W_{e}^{X}. If $X=\emptyset$ we may omit the oracle in the notation.

Given a c.e. index of $Q \subseteq 2^{<\omega}$, a program which computes $\mu([Q])$ and a right-c.e. relative to $\emptyset^{(3)}$ index of a real $\gamma<1$ such that $\mu([Q])<\gamma$ we can compute a c.e. relative to $\emptyset^{(3)}$ index of a set of strings J such that $Q \subseteq J$ and $\mu\left(2^{\omega}-[J]\right)=\gamma$.
Proof of (5.5). Let $(Q[s])$ be a computable enumeration of Q such that $\mu(Q)-$ $\mu(Q[s])<2^{-s}$. Also let $\left(\gamma_{s}\right)$ be a $\emptyset^{(3)}$-computable decreasing sequence of rationals converging to γ. At stage $2 s+1$ put $Q[s+1]-Q[s]$ into J. At stage $2 s+2$ if $\gamma_{s+1}+2^{-s-1}<1-\mu(J[2 s+1])$ put into J a finite number of strings such that $\mu(J[2 s+2])-\mu(J[2 s+1])=1-\mu(J[2 s+1])-\gamma_{s+1}-2^{-s-1}$. By the construction we have $Q \subseteq J$. Moreover $1-\mu(J) \geq \gamma$. Also for each $s \in \mathbb{N}$ we have $1-\mu(J[2 s+1]) \leq$ $\gamma_{s+1}+2^{-s-1}$. Hence $1-\mu(J)=\gamma$.

We give a formal version of (5.5) which will be used in an application of the fixedpoint theorem.

There is a computable function p such that for each $e, i, j \in \mathbb{N}$, if $\mu\left(W_{e}\right)=$ Φ_{i} and $\Psi_{j}^{\emptyset^{(3)}}$ is a decreasing sequence with $\mu\left(W_{e}\right)<\Psi_{j}^{\emptyset^{(3)}}(s)$ for all $s \in \mathbb{N}$ then $W_{e} \subseteq W_{p(e, i, j)}^{\emptyset^{(3)}}$ and $\mu\left(2^{\omega}-\left[W_{p(e, i, j)}^{\emptyset^{(3)}}\right]\right)=\lim _{s} \Psi_{j}^{\emptyset^{(3)}}(s)$.
Consider the following program that is based on Lemma 3.1.

> Program: Given j, k, run the program of Lemma 3.1 with input $J=W_{j}^{\emptyset^{(3)}}$ and $e=c(k)$.

Let f, g, h be the following computable functions that give the output of Program (5.7) on input j, k :

- $W_{f(j, k)}$ coincides with the set Q of Lemma 3.1 (with $J=W_{j}, e=c(k)$)
- $\Phi_{g(j, k)}$ computes $\mu(Q)$ of Lemma 3.1 (with $J=W_{j}, e=c(k)$)
- $\Psi_{h(j, k)}^{\emptyset^{(3)}}$ is a non-increasing sequence of rationals converging to $P_{U} \cdot \mu(S)$ from (4.7) in Lemma 3.1.
By the fixed-point theorem we can find $j, k \in \mathbb{N}$ such that
- $\Phi_{h(j, k)}^{\emptyset^{(3)}}=\Phi_{k}^{\emptyset^{(3)}}$
- $W_{p(f(j, k), g(j, k), t(k))}=W_{j}$

By (5.7) (and the underlying program of Lemma 3.1) we have $\mu(Q)<2^{-c(k)}$. Since $S \subseteq Q$ (see the discussion above (4.7)) the real $P_{U} \cdot \mu(S)$ is less than $2^{-c(k)}$. In other words, by the choice of h, the right-c.e. relative to $\emptyset^{(3)}$ real with index $h(j, k)$ is less than $2^{-c(k)}$. But by the first clause of the fixed-point equations this right-c.e. relative to $\emptyset^{(3)}$ real also has index k. Then by (5.4) the real with index $t(k)$ is $1-\Omega_{N}^{\emptyset^{(3)}}-\lim _{s} \Phi_{h(j, k)}^{\emptyset^{(3)}}(s)$. By the second clause of the fixed-point equations, the latter is equal to the measure of $2^{\omega}-[J]$.

$$
\begin{equation*}
\mu\left(2^{\omega}-[J]\right)=1-\Omega_{N}^{\emptyset^{(3)}}-\lim _{s} \Phi_{h(j, k)}^{\emptyset^{(3)}}(s) \tag{5.8}
\end{equation*}
$$

Hence if we denote by \mathcal{U} the class of reals which preserve universality with respect to the machine V which was produced by Program (5.7) (with the fixed-point input) we have:

$$
\mu(\mathcal{U})=\mu([Q] \cap \mathcal{U})+\mu\left(\mathcal{U} \cap\left(2^{\omega}-[Q]\right)\right)=P_{U} \cdot \mu(S)+\mu\left(\left(2^{\omega}-[Q]\right) \cap\left(2^{\omega}-[J]\right)\right)
$$

where the last equality was obtained by Clause (a) of Lemma 3.1 and (4.7). Since $Q \subseteq J$ in this particular fixed-point construction, $2^{\omega}-[J] \subseteq 2^{\omega}-[Q]$. Hence

$$
\mu(\mathcal{U})=P_{U} \cdot \mu(S)+\mu\left(2^{\omega}-[J]\right)=P_{U} \cdot \mu(S)+1-\Omega_{N}^{\emptyset^{(3)}}-\lim _{s} \Phi_{h(j, k)}^{\emptyset(3)}(s)
$$

where the last equality follows by (5.8). But by the definition of h we have $\lim _{s} \Phi_{h(j, k)}^{\emptyset^{(3)}}(s)=P_{U} \cdot \mu(S)$. Hence $\mu(\mathcal{U})=1-\Omega_{N}^{\emptyset^{(3)}}=\alpha$ and this concludes the proof of Theorem 3.4.

References

[BC02] Verónica Becher and Gregory J. Chaitin. Another example of higher order randomness. Fundam. Inform., 51(4):325-338, 2002.
[BFGM06] Verónica Becher, Santiago Figueira, Serge Grigorieff, and Joseph S. Miller. Randomness and halting probabilities. J. Symb. Log., 71(4):1411-1430, 2006.
[BG07] Verónica Becher and Serge Grigorieff. Random reals à la Chaitin with or without prefix-freeness. Theor. Comput. Sci., 385(1-3):193-201, 2007.
[Cha75] Gregory J. Chaitin. A theory of program size formally identical to information theory. J. Assoc. Comput. Mach., 22:329-340, 1975.
[CHKW01] C. Calude, P. Hertling, B. Khoussainov, and Y. Wang. Recursively enumerable reals and Chaitin Ω numbers. Theoret. Comput. Sci., 255(1-2):125-149, 2001.
[Dav00] Martin Davis. The Universal Computer: The Road from Leibniz to Turing. W. W. Norton \& Co., Inc., New York, NY, USA, 2000.
[DH10] Rod Downey and Denis Hirshfeldt. Algorithmic Randomness and Complexity. Springer, 2010.
[DHMN05] Rod Downey, Denis R. Hirschfeldt, Joseph S. Miller, and André Nies. Relativizing Chaitin's halting probability. J. Math. Log., 5(2):167-192, 2005.
[dLMSS55] K. de Leeuw, E. F. Moore, C. E. Shannon, and N. Shapiro. Computability by probabilistic machines. In C. E. Shannon and J. McCarthy, editors, Automata Studies, pages 183-212. Princeton University Press, Princeton, NJ, 1955.
[Dow08] D. L. Dowe. Foreword re C. S. Wallace. Computer Journal, 51(5):523 - 560, September 2008. Christopher Stewart WALLACE (1933-2004) memorial special issue.
[Dow11] D. L. Dowe. MML, hybrid Bayesian network graphical models, statistical consistency, invariance and uniqueness. In P. S. Bandyopadhyay and M. R. Forster, editor, Handbook of the Philosophy of Science - Volume 7: Philosophy of Statistics, pages 901-982. Elsevier, 2011.
[FSW06] Santiago Figueira, Frank Stephan, and Guohua Wu. Randomness and universal machines. J. Complexity, 22(6):738-751, 2006.
[Kol65] A. N. Kolmogorov. Three approaches to the definition of the concept "quantity of information". Problemy Peredači Informacii, 1(vyp. 1):3-11, 1965.
[Kol68] A. N. Kolmogorov. Logical basis for information theory and probability theory. IEEE Transactions on Information Theory, 14:662-664, 1968.
[KS01] A. Kučera and T. Slaman. Randomness and recursive enumerability. SIAM J. Comput., 31(1):199-211, 2001.
[Kuč85] Antonín Kučera. Measure, Π_{1}^{0}-classes and complete extensions of PA. In Recursion theory week (Oberwolfach, 1984), volume 1141 of Lecture Notes in Math., pages 245259. Springer, Berlin, 1985.
[Lev73] L. A. Levin. The concept of a random sequence. Dokl. Akad. Nauk SSSR, 212:548-550, 1973.
[LV97] Ming Li and Paul Vitányi. An introduction to Kolmogorov complexity and its applications. Graduate Texts in Computer Science. Springer-Verlag, New York, second edition, 1997.
[ML66] Per Martin-Löf. The definition of random sequences. Information and Control, 9:602619, 1966.
[Nie09] André Nies. Computability and Randomness. Oxford University Press, 444 pp., 2009.
[Sol64] R. J. Solomonoff. A formal theory of inductive inference. I. Information and Control, 7:1-22, 1964.
[Sol75] R. Solovay. Handwritten manuscript related to Chaitin's work. IBM Thomas J. Watson Research Center, Yorktown Heights, NY, 215 pages, 1975.
[Tur36] Alan M. Turing. On computable numbers with an application to the Entscheidungsproblem. Proc. London Math. Soc. (3), 42:230-265, 1936. A correction, 43:544546.
[vL87] M. van Lambalgen. Random sequences. PhD dissertation, University of Amsterdam, The Netherlands, 1987. ISBN 9729961506.
[Wal05] C.S. Wallace. Statistical and Inductive Inference by Minimum Message Length (Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.
[WD99] C. S. Wallace and D. L. Dowe. Minimum message length and Kolmogorov complexity. Computer Journal, 42:270-283, 1999.
[ZL70] A. K. Zvonkin and L. A. Levin. The complexity of finite objects and the basing of the concepts of information and randomness on the theory of algorithms. Uspehi Mat. Nauk, 25(6(156)):85-127, 1970.

George Barmpalias: State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100190, P.O. Box 8718, China.

E-mail address: barmpalias@gmail.com
$U R L$: http://www.barmpalias.net
David L. Dowe: School of Computer Science and Software Engineering, Clayton School of I.T., Monash University, Clayton, Vic. 3800, Australia.

E-mail address: david.dowe@monash.edu
URL: http://www.csse.monash.edu.au/~dld

[^0]: Last revision: 16 January 2012.
 2010 Mathematics Subject Classification. 03D32,68Q30,03D10.
 Key words and phrases. Kolmogorov complexity, prefix-free complexity, universality probability, algorithmic randomness.

 Barmpalias was supported by a research fund for international young scientists No. 61150110168 and an International Young Scientist Fellowship number 2010-Y2GB03 from the Chinese Academy of Sciences. Partial support was also obtained by the Grand project: Network Algorithms and Digital Information of the Institute of Software, Chinese Academy of Sciences. David Dowe thanks Chris J. Ash (1945-1995) for teaching him logic. We thank Chris Wallace (1933-2004) for originally drawing the notion of universality probability to our attention, and we thank the anonymous referees for their useful feedback.

[^1]: ${ }^{1}$ Occasionally $\emptyset^{(1)}$ is also denoted by \emptyset^{\prime}.

[^2]: ${ }^{2} \mathrm{~A}$ set A is partial many-one reducible to a set B if $A=f^{-1}(B)$ for some partial computable function f. For more references about partial many-one reductions see [BG07, Section 2].

