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“Evidence” in the form of data collected and analysis thereof is fundamental to medicine,
health and science. In this paper, we discuss the “evidence-based” aspect of evidence-based
medicine in terms of statistical inference, acknowledging that this latter field of statistical
inference often also goes by various near-synonymous names—such as inductive inference
(amongst philosophers), econometrics (amongst economists), machine learning (amongst
computer scientists) and, in more recent times, data mining (in some circles).

Three central issues to this discussion of “evidence-based” are (i) whether or not the statis-
tical analysis can and/or should be objective and/or whether or not (subjective) prior
knowledge can and/or should be incorporated, (ii) whether or not the analysis should be
invariant to the framing of the problem (e.g. does it matter whether we analyse the ratio of
proportions of morbidity to non-morbidity rather than simply the proportion of morbid-
ity?), and (iii) whether or not, as we get more and more data, our analysis should be able
to converge arbitrarily closely to the process which is generating our observed data.

For many problems of data analysis, it would appear that desiderata (ii) and (iii) above
require us to invoke at least some form of subjective (Bayesian) prior knowledge. This sits
uncomfortably with the understandable but perhaps impossible desire of many medical
publications that at least all the statistical hypothesis testing has to be classical non-
Bayesian—i.e. it is not permitted to use any (subjective) prior knowledge.
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434 D. L. Dowe

Introduction

Data is collected in medical and other scientific studies to provide “evidence” in
support of or against a variety of hypotheses. Ultimately, we hope that collection and
analysis of such data evidence in turn both enables us to accurately infer any underlying
process from which the data is generated and also to accurately predict as yet unmea-
sured outcomes.

We will examine here several desirable properties—or desiderata—for a statistical
inference technique in analysing medical and other data. We will address the issue of
whether or not all of these desiderata can be simultaneously satisfied and when some
sort of trade-off might be necessary.

One property that we want from our statistical inference technique is that of statistical
consistency. Informally, this says that as the amount of data collected increases, we
converge closer and closer and arbitrarily close to whatever underlying process can be
said to be generating the data. Single and multiple latent factor analysis are but a
few examples of problems for which frequently-used modelling tools are statistically
inconsistent.

Another property which we want from our statistical inference tool is the ability to
make probabilistic models and accurately quantify noise. Diagnoses such as “yes”/“no”
or “presence”/“absence” of some condition are less useful than models which give a
probability of a diagnosis. Rather than respond with “no”, a system returning a proba-
bility of (say) 10% of some condition enables the medical experts to decide upon possi-
ble treatment and further tests; and certainly there is much more difference between
(say) 10% and 45% than there is between two (less informative) responses of “no”.

Another property which we presumably also want from our statistical inference tool
is that of statistical invariance—namely, that the inferred value is independent of the
framing of the problem. By “framing”, I don’t particularly mean linguistic framing but
rather a statistical or (statistically) parametric framing. (For example, variations of
Bertrand’s paradox say that in a cube of side-length between 1 and 2, the side-length
has probability 1/2 of being less than 1.5 but the volume has probability 1/2 of being
less than 4.5, which—paradoxically?—is not 1.53.) To elaborate, if we know a skin
lesion or tumour to be circular, then statistical invariance would require that the esti-
mated area is equal to π times the square of the estimated radius. Whether we param-
eterise in terms of radius or area, we get the same answer.

Perhaps the single main other issue to mention in the use of “evidence” is the differ-
ence between inference and prediction. Inference is the use of one—ideally the “best”—
theory to model the observed data and find a pattern within it. Prediction is concerned
with forecasting as yet unseen data. Unless the currently observed data has one outstand-
ing single best theory, prediction is often best done by combining more than one theory.

Desiderata in (Probabilistic) Inference and (Probabilistic) Prediction

Data can be both time-consuming and expensive to collect and obtain. It is often useful
to know the accuracy to which the data was measured (Wallace and Dowe 1993, 1–3,
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Social Epistemology 435

1994, 38, secs 2 and 2.1, 2000, sec. 2, 74, col. 2; Dowe, Allison et al. 1996, sec. 2; Kissane,
Bloch, Dowe et al. 1996, 651; Comley and Dowe 2003, sec. 9, 2005, sec. 11.3.3, 270;
Fitzgibbon, Dowe and Vahid 2004, eqn (19); Wallace 2005, secs 3.1.1 and 3.3; Dowe,
Gardner and Oppy 2007; Dowe 2008, sec. 0.2.4)—as, after all, no-one knows their
height or weight to infinitely many decimal places (if such a notion were even to make
sense). It is also important to make good use of the data—whether we are making some
sort of (probabilistic) inference, doing some sort of (probabilistic) prediction or
perhaps (Dowe 2008, sec. 0.2.5) doing some kind of hypothesis test.

When doing (probabilistic) inference to some hypothesis, H, from (observed) data,
D, we look at some possible desiderata, or properties that we might desire in our infer-
ence technique(s).

Statistical Invariance

Many problems can be phrased in several equivalent ways. Informally, statistical invari-
ance says that we infer the same answer no matter how we phrase (or parameterise) the
problem. Let us give several examples to clarify this point: 

1. if p is the proportion of the population with a certain condition (or illness, diagno-
sis, prognosis, etc.) and q is the relative “odds ratio” proportion of those thus
affected divided by those unaffected, then q = p/(1 − p) and p = q/(1 + q);

2. if r and A are the radius and area of a circle respectively through which an epidemic

has spread (or, alternatively, of a surface lesion), then A = πr2 and r = 
3. if a cube (maybe call it C) has side length l, face area A and volume V, then l = A1/2

= V1/3, A = l2 = V2/3 and V = l3 = A3/2;
4. if a vector in the plane (such as direction and strength of a magnetic field) has direc-

tion θ and distance (or strength), κ (in polar co-ordinates) and can also be thought

of (in Cartesian co-ordinates) as (x, y), then (x, y) = (κ cos θ, κ sin θ) and1 (κ, θ) =

(  tan−1 (y/x)).

In the language of statistical inference,  denotes the estimated value of θ. The hat
(or circumflex), ˆ, denotes an estimated value. Recall that, informally, statistical invari-
ance says that we get the same answer no matter how we phrase (or parameterise) the
problem. So, for example, with item 1 above, statistical invariance of an estimator
would give us that  and equivalently  Not all problems have
a “natural” parameterisation (or framing), so if we don’t have statistical invariance
then we have to get a different estimate for each re-parameterisation (or re-framing),
potentially leading to awkward situations where for some cube (as in item 3) we might
perhaps rather curiously estimate poorly matching values such as (e.g.)  = 0.98, Â =
1.03 and  = 0.97.

Notice also that many notions of “error”, like bias and squared error, are not invari-
ant to re-parameterisation. However, the notion of Kullback–Leibler divergence (or
Kullback–Leibler distance) from the next section is one measure which is invariant
under re-parameterisation.

A / ;π

x y2 2+ ,

θ̂

ˆ ˆ / ( ˆ)q p p= −1 ˆ ˆ / ( ˆ).p q q= +1

l̂
V̂
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436 D. L. Dowe

Kullback–Leibler Divergence (or Kullback–Leibler Distance)

The Kullback–Leibler divergence is a measure of the difference between two probability
distributions. It has the property of being invariant to re-parameterisation. The diver-
gence is typically not symmetrical, though, meaning that the distance from distribution
f  to distribution g is not necessarily the same as the distance from distribution g to distri-
bution f. This lack of symmetry is why some prefer the term “divergence” to “distance”.

If f and g are both discrete distributions, with probabilities f1, …, fN and g1, …, gN
for an N-state multinomial distribution (such as a two-sided coin with N = 2, or a six-
sided dice with N = 6), then the Kullback–Leibler distance from f to g is defined as

If f and g are both continuous-valued distributions, then we replace the summation
by an integral and the Kullback–Leibler distance from f to g is defined as  K L(f, g) =
∆(g || f) = ∫ f log(f/g).

The Kullback–Leibler distance between two Bayesian networks (or graphical
models) f and g can be defined as in Tan and Dowe (2006, sec. 4.2) or Dowe (2008, sec
0.2.5) and the Kullback–Leibler distance between two mixture models can be defined
similarly. And there is no problem having a hybrid of both discrete- and continuous-
valued variables.

Statistical Consistency

Informally, statistical consistency says that, as we get more and more data, we converge
more and more closely—and, ultimately, arbitrarily closely—to the true underlying
model. More formally, if θ is a parameter value, N is a sample size and  is a parameter
estimate from a sample of size N, then statistical consistency says that 

In other words, as we get more and more data, then with arbitrarily large probability
we can converge arbitrarily closely to any true underlying model. Given our intuition
that more and more data should enable us to infer more and more accurately, and
given how expensive and time-consuming it can be to collect data, statistical consis-
tency—that more data will ultimately take us to the correct answer—seems like one of
the very least things we should seek in an inference method.

The notion of statistical consistency raises at least four other issues. First, it raises the
issue of efficiency (Wallace 2005, sec. 3.4.5; Dowe, Gardner and Oppy 2007, sec. 8; Dowe
2008, sec. 0.2.5, especially footnote 162), the idea of not just converging on the true
model (consistency) but of converging on the true value as quickly—or as efficiently—
as possible. A second issue, perhaps subtly different to (asymptotic) efficiency, is that
of—loosely speaking—performing well on small sample sizes. Statistical consistency
guarantees asymptotic convergence, and (asymptotic) efficiency guarantees perform-
ing as well as possible on large (asymptotic) sample sizes. Efficiency and excellent small-
sample performance are surely related, but surely also not identical. Third, it raises the
issue of consistency when the model is misspecified (or, equivalently, when the true

K L f g g f f f gi i ii

N
 ( , ) ( ) log( / ).= =

=∑∆
1

θ̂

∀ ∀∈ > ∃ ∀ ≥ − <∈ > −∈θ θ θ0 10 0N N N Pr(| ˆ | ) .

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
M
o
n
a
s
h
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
0
7
:
5
0
 
1
7
 
D
e
c
e
m
b
e
r
 
2
0
0
8



Social Epistemology 437

model is not in the class of models being considered by the estimators) (Grünwald and
Langford 2007; Dowe 2008, sec. 0.2.5). Given that many, if not perhaps most, inference
problems have to contend with misspecification (e.g. Normal distributions are often
used to model heights and other variables that can’t take negative values), misspecifi-
cation and inference methods which might or might not be susceptible to its vagaries
(Grünwald and Langford 2007; Dowe 2008, sec. 0.2.5) should be paid greater attention.
Fourth (and last), there is the issue of methods which are statistically consistent for
(easier) problems where the number of parameters remains fixed but which do or don’t
remain statistically consistent for (harder) problems where the number of parameters
increases as the amount of data increases (to the point where the amount of data per
parameter is always bounded above, as in section “Amount of Data per Parameter
Bounded Above”). It is known that some inference methods (such as Maximum
Likelihood and AIC from sections “Maximum Likelihood” and “Akaike’s Information
Criterion (AIC) and Penalised (Maximum) Likelihood” often become statistically
inconsistent in such cases (Neyman and Scott 1948), while at least one other method
(MML from section “Minimum Message Length”) appears to remain statistically
consistent (Dowe and Wallace 1997; Wallace 2005, secs 4.2–4.5; Dowe, Gardner and
Oppy 2007, secs 6.1 and 8; Dowe 2008, sec. 0.2.5).

Probabilistic Inference—vs. Mere Non-probabilistic Classification

Many inference problems are in ([supervised or] extrinsic) classification and—
especially within the machine learning community—these are often regarded as
problems of right vs. wrong. Probabilities are often neglected, whereas for certain
([moderately] serious) medical conditions the threshold for further investigation or
treatment might well be other than 50%. If a patient presenting with chest pains were
deemed to “only” have a 40% probability of heart attack or even deemed to “only” have
a probability of 15% of heart attack, it would be somewhere along the lines of irrespon-
sible, negligent and legally challenging to classify this as a “no” and not give treatment.
This remains true whether the patient was presenting in person or telephoning a service
such as Nurse On Call for a provisional symptom-based assessment over the phone. Even
in DNA microarray classification, it is more prudent and probably also safer to report
probabilities. While “right”/”wrong” is a fairly easy and seemingly natural scoring
system to use, it is not invariant to re-framing of questions. As an example, consider
a four-class problem which can be divided in three reasonable different ways into two
two-class problems. The “right”/”wrong” score will depend upon the relevant division.
However, probabilistic inference with log-loss scoring (Dowe and Krusel 1993, 4,
Table 3; Dowe et al. 1998, sec. 3; Needham and Dowe 2001, Figs 3–5; Tan and Dowe
2002, sec. 4, 2004, sec. 3.1, 2006, secs 4.2–4.3; Kornienko, Dowe and Albrecht 2002,
Table 2; Comley and Dowe 2003, sec. 9, 2005, sec. 11.4.2; Tan and Dowe 2003, sec. 5.1;
Kornienko, Albrecht and Dowe 2005a, Tables 2–3, 2005b; Tan, Dowe and Dix 2007,
sec. 4.3; Dowe 2008, sec. 0.2.5, especially footnote 175 [and 176]) not only scores prob-
abilities, but it also has the desirable feature that the optimal long-term strategy is to
give the true probabilities (if known).
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438 D. L. Dowe

If you assign probabilities {pi : i = 1, …, N} for events {ei : i = 1, …, N} such that pi ≥

0 and  then for some constant c (however chosen), if event ej is the event

that actually happened, then log-loss (or “probabilistic bit-cost”) scoring awards a
score of c + logpj. This scoring system has been used for Australian Football League

(AFL) matches since early 1995 (Dowe, Farr et al. 1996; Dowe et al. 1998, sec. 3; Dowe
2008, sec. 0.2.5). With a probability of p on one team (and 1 − p on the other—in a
match between two teams), using the constant c = 1, this competition at
www.csse.monash.edu.au/∼footy gives scores of 1 + log2 p if you’re right, and 1 + log2

(1 − p) if you’re wrong.
Log-loss scoring is invariant under re-framing of the problem (Dowe 2008, sec.

0.2.5, especially footnote 175 [and 176]), and appears—rather importantly—to enjoy
the property of being unique in this respect.

And just as log-loss scoring appears to be unique in its invariance under re-framing
of the problem, so, too, in some sense the (analogous) Kullback–Leibler divergence
from section “Kullback–Leibler Divergence (or Kullback–Leibler Distance)” seems to
also be unique in retaining invariance under re-framing of a problem. Both KL(f, g) =
∆(g|| f) and KL(g, f) = ∆(f ||g) are invariant to the level of detail of re-framing of the
problem and appear to be unique in having this property—although, clearly, any linear
combination αKL(f, g) + (1 − α)KL(g, f) (with 0 ≤ α ≤ 1) will also share this invariance.
(Interestingly, the difference between the approaches in Dowe (2008, sec. 0.2.2, foot-
notes 64 and 65) mentioned in section “Properties of MML (and Approximations)”
largely comes down to the difference between KL(f, g) and KL(g, f). This said, for
those interested in the finer detail of current state-of-the-art MML approximations, it
seems opportune here to re-visit an issue from (Dowe, 2008, sec. 0.2.2, footnote 65).
Upon reflection, (Dowe, 2008, sec. 0.2.2, footnote 64, eq (3)) should be further from
Maximum Likelihood than the method from (Dowe, 2008, sec. 0.2.2, footnote 65). I
wrap up this note by idly speculating about the merits of returning to (Dowe, 2008, sec.
0.2.2, footnotes 64 and 65) with a hybrid method involving αKL(θ*, θ) + (1 − α)KL(θ,
θ*) with α = 1/2.)

And just as log-loss scoring retains the above uniqueness in its invariance under re-
framing of the problem when we add (or subtract) the entropy of the prior (or a
multiple thereof) (Dowe, 2008, footnote 176), again, so, too, the Kullback–Leibler
divergence—or even any linear combination αKL(f, g) + (1 − α)KL(g, f) (with 0 ≤ α
≤ 1)—retains its invariance when we add (or subtract) the entropy of the prior (or a
multiple thereof).

Bayesianism vs. Non-Bayesianism

Much metaphorical “blood” has been spilt on the issue of whether or not prior beliefs
should be incorporated into analysing data. Bayesians are those who contend that any
prior knowledge should be used. While this seems fairly clear (to me), it opens some
cans of worms. One issue is exactly how should we quantify our prior beliefs? Another
issue is to ask what two different people with different prior beliefs—or, more

pii

N
=

=∑ 1
1

,

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
M
o
n
a
s
h
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
0
7
:
5
0
 
1
7
 
D
e
c
e
m
b
e
r
 
2
0
0
8



Social Epistemology 439

extremely, (as expert witnesses) in opposing sides of a class action, malpractice suit or
other legal battle—should do to reconcile the fact that their different prior beliefs will
give rise to different answers.

Some classical (non-Bayesian) statisticians have suggested quite wrongly that
Bayesian methods are not statistically invariant. While it is true that some Bayesian
methods are not statistically invariant, some most certainly are (Wallace and Boulton
1975).

Some Bayesian statisticians are almost self-conscious about the presence of a prior
probability distribution representing prior beliefs, and try in a variety of ways to
make such a term as objective as possible. Taking the log-likelihood from section
“Maximum Likelihood” the Fisher information is the determinant of the matrix of the
expected second partial derivatives of the log-likelihood (Wallace 2005, sec. 5.1). One
of many attempts to be as objective as possible while still being Bayesian is to use the
observation of Jeffreys that the Fisher information has the same mathematical form as
a prior (Jeffreys 1946), and to use it as a prior. Jeffreys himself never advocated this
(Wallace 2005, sec. 1.15.3), it seems rather odd that our prior beliefs should depend
upon the observed data, and this (so-called) “Jeffreys prior” frequently either has an
infinite integral or other failings (Wallace and Dowe 1999a, sec. 5, 277, col. 2, 1999b,
sec. 2.3; Comley and Dowe 2005, sec. 11.4.3, 273; Wallace 2005, sec. 10.2.1; Dowe
2008, footnote 75).

It would be fair to say that the community is still a long way from being unified in
the best way to analyse data. But it must be pointed out that not only can Bayesian
methods be statistically invariant (Wallace and Boulton 1975; Wallace 2005) but that,
furthermore, it has been conjectured (Dowe et al. 1998, 93; Edwards and Dowe 1998,
sec. 5.3; Wallace and Dowe 1999a, 282, 2000, sec. 5; Comley and Dowe 2005, sec.
11.3.1, 269; Dowe, Gardner and Oppy 2007, sec. 8; Dowe 2008, sec. 0.2.5) that only
Bayesian methods can give both statistical invariance and statistical consistency on the
harder problems (with the amount of data per parameter bounded above) in sections
“Statistical Consistency” and “Amount of Data per Parameter Bounded Above”.

We now look at (probabilistic) prediction in the next section and then, in section
“Some Methods of Inference: Maximum Likelihood, AIC, (Bayesian) MAP, etc.” we
look at some classical (non-Bayesian) and some Bayesian approaches to inference,
including (in section “Bayes’s Theorem and Bayesianism”) a discussion of Bayes’s
theorem.

(Probabilistic) Prediction

The distinction between inference and prediction is that inference is concerned with
finding the single best theory while prediction is concerned with finding the most prob-
able future data—see also Wallace and Dowe (1999a, sec. 8) and Wallace (2005, sec.
10.1.2). Classical non-Bayesians seem either to conflate these two notions or to regard
the single best inference as necessarily being the best predictor. In the Bayesian
approach, theories have a prior probability (distribution) before the data is seen and
then a posterior probability (distribution) after the data is seen.
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440 D. L. Dowe

The optimal Bayesian predictor combines all theories available, weighting them
according to their respective posterior probabilities. Classical non-Bayesian inference
tends to over-fit and err on the side of under-estimating any spread in the data. The
single best (Bayesian) inference tends to give the best estimate of spread in the data. The
best (Bayesian) predictor makes a weighted Bayesian combination of theories, as in
section “Prediction”. This results in a slightly conservative over-estimate of the spread
in the data, due to the combination of diverse theories (Wallace 2005, sec. 4.9).

And, of course, the quality of any probabilistic predictions can be measured using
the log-loss (“probabilistic bit cost”) scoring method from section “Probabilistic
Inference—vs. Mere Non-probabilistic Classification”.

Some Methods of Inference: Maximum Likelihood, AIC, (Bayesian) MAP, etc.

Given data, D, how do we (best) choose which hypothesis, H, to infer? Recalling the
discussion of Bayesianism from section “Bayesianism vs. Non-Bayesianism”, we look
at several approaches below. We consider classical (non-Bayesian) approaches in
sections “Maximum Likelihood”, “Akaike’s Information Criterion (AIC) and Pena-
lised (Maximum) Likelihood” and “Other: Other Classical, Other Bayesian, etc.”, and
we consider Bayesian approaches in sections “Bayes’s Theorem and Bayesianism”,
“Maximum A Posteriori (MAP)”, “Other: Other Classical, Other Bayesian, etc.” and
“Minimum Message Length (MML)”.

Maximum Likelihood

Maximum Likelihood says that, given data D, we should choose the hypothesis, H, for
which the likelihood Pr(D|H) is maximised. Given the monotonicity of the likelihood
function, Maximum Likelihood is equivalent to minimising −logPr(D|H).

This classical approach to inference is statistically invariant—and a hand-waving
argument for this is that stretching the likelihood function in and out sideways will not
affect the maximum height or any height. But Maximum Likelihood tends to over-fit
(especially on small sample sizes) (Wallace and Dowe 1993), “finding” non-existent
patterns in random noise. One simple case in point is, where even in the case of the
Gaussian distribution, the Maximum Likelihood estimator of the variance has to be
corrected and multiplied by  for sample size, N (Dowe, Gardner and Oppy 2007,
sec. 6.1.1). Another simple case in point is the bus number problem (Dowe 2008, foot-
note 116, 535–536), where we arrive in a new town with θ buses numbered consecu-
tively from 1 to θ. If we see only one bus and observe its number, xobs, then Maximum
Likelihood tells us to estimate θ as xobs. This will typically be a silly under-estimate.

At least two or three more issues arise with Maximum Likelihood.
One issue is how do we choose between models of increasing complexity and

increasingly good fit—e.g. constant, linear, quadratic, cubic, …? Maximum Likelihood
advocates an unambiguous approach when all is parameterised (e.g. we know that the
function is linear with Gaussian noise), but when models are nested it doesn’t give a
way of avoiding the most complicated model.

N
N −1
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Social Epistemology 441

A second issue is that Maximum Likelihood chooses the hypothesis to make the
already observed data as likely as possible. But the data has already been observed—so,
philosophically, choosing the hypothesis to make the already observed data as (retro-
spectively) probable as possible seems to be stating the problem back to front.
Shouldn’t we instead find some way of choosing H so as to maximise Pr(H|D)? Plenty
of Bayesians might consider this to be self-evident or at worst close to conclusive
(Berger and Wolpert 1988; Bernardo and Smith 1994) (but classical likelihood-based
reasoning and its advocates do live on (Glymour 1981; Forster and Sober 1994), as per
section “Other: Other Classical, Other Bayesian, etc.”).

A third issue, which is mentioned in section “Statistical Consistency”, is that
Maximum Likelihood is known to be statistically inconsistent for a wide range of
problems where the amount of data per parameter is bounded above (Neyman and
Scott 1948; Wallace and Freeman 1992; Wallace 1995; Wallace and Dowe 2000, sec. 5;
Dowe, Gardner and Oppy 2007, secs 6.1 and 8; Dowe 2008, sec. 0.2.5).

Akaike’s Information Criterion (AIC)—see next section—is one attempt to address
the first issue. The second issue is the contentious “Bayesianism vs. non-Bayesianism”
issue of section “Bayesianism vs. non-Bayesianism”. If we think that maximising
Pr(H|D) makes more sense than maximising Pr(D|H), then it makes sense to explore
Bayesian approaches—such as Maximum A Posteriori (MAP) and Minimum Message
Length (MML) from sections “Maximum A Posteriori (MAP)” and “Minimum
Message Length (MML)” respectively, both of which use Bayes’s theorem (from
section “Bayes’s Theorem and Bayesianism”).

Akaike’s Information Criterion (AIC) and Penalised (Maximum) Likelihood

Where Maximum Likelihood advocates minimising −logPr(D|H), the Akaike Informa-
tion Criterion (AIC) advocates minimising 2.(−log Pr(D|H) + k), or equivalently (−log
Pr(D|H) + k), where k is the number of free parameters (Akaike 1970, 1973). (It is
worth mentioning that there is a substantial literature on AIC where the penalty, k, has

been changed to, e.g.  and a variety of other constants multiplied by k. This will typi-

cally not change things overly much.) So, in the special case when the model class is
known, the relevant variables have already been selected and we only need to do
parameter estimation (e.g. we are fitting a univariate cubic polynomial with Gaussian

noise,  as per section “Problems with Increasing Numbers of

Parameters” for some (a0, a1, a2, a3, σ2) to be inferred), AIC reduces to Maximum

Likelihood. The fact that AIC is the likelihood function with a penalty term (namely,
k) means that AIC can be regarded as a form of penalised likelihood.

For the wide range of problems where the amount of data per parameter is bounded
above (Neyman and Scott 1948; Wallace and Freeman 1992; Wallace 1995; Wallace and
Dowe 2000, sec. 5; Dowe, Gardner and Oppy 2007, secs 6.1 and 8; Dowe 2008, sec.
0.2.5) and there is no variable selection, AIC reduces to Maximum Likelihood and
suffers the same problems of statistical inconsistency. For a comparison of AIC and the
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Bayesian MML approach (from section “Minimum Message Length (MML)”), see
Wallace and Dowe (1999a, sec. 9) and Dowe, Gardner and Oppy (2007).

Bayes’s Theorem and Bayesianism

Following discussions such as that in section “Bayesianism vs. non-Bayesianism” let us
explore Bayesianism—the notion that we should look at Pr(H|D) rather than at
Pr(D|H).

The Bayesian approach takes into account our prior beliefs over the space of possi-
ble hypotheses. We will write the prior probability of H as Pr(H). This is the probabil-
ity distribution over the space of hypotheses prior to—or before—seeing any data. We
can combine the prior, Pr(H) and the (statistical) likelihood function, Pr(D|H), to
calculate the posterior distribution—which is the probability of hypotheses after
seeing the data. The relationship between the prior (Pr(H)), the likelihood (Pr(D|H))
and the posterior (Pr(H|D)) can be shown using Bayes’s theorem, which can also
be thought of in terms of a Venn diagram. Repeated application of Bayes’s theorem
thus gives 

So, this now gives the posterior probability of H given D as 

where the marginal probability of D, Pr(D) or marginal(D), is the prior probability that
D is the data-set generated. Informally, depending upon whether H is a discrete space
over which we sum or a continuous space over which we integrate, we can write

 or  Discrete spaces include

cases such as all attributes are categorical (e.g. drinker or non-drinker, smoker or non-
smoker, male or female, etc.) and continuous spaces include attributes such as height
or weight. Of course, hybrid spaces with both discrete (categorical) and continuous
attributes exist, and the above formula for Pr(D) is modified to sum over the discrete
attributes and integrate over the continuous attributes. The term attribute sometimes
goes by alternative names including (e.g.) dimension, feature, field and variable. Note
that all the hypotheses are used to calculate Pr(D) but that they are all summed or inte-
grated out—and, as such, Pr(D) is independent of any individual hypothesis or rival
hypotheses being considered for inference. So, from Equation 2, maximising Pr(H|D)
is equivalent to maximising Pr(H) · Pr(D|H).

The Bayesian interested in doing inference is quite probably going to be inter-
ested in choosing H to maximise Pr(H|D)—or, equivalently, to maximise Pr(H) ·
Pr(D|H). But issues arise here and, if we are not careful and principled, we might be
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left open to a criticism from a classical statistician along the lines of “Classical
approaches based on likelihood and penalised likelihood are invariant under re-
parameterisation, but maximising the Bayesian posterior usually isn’t”. One issue
here will be when we are dealing exclusively with discrete (categorical) attributes—
and so are dealing with probabilities—and when instead at least one of our
attributes is continuous and so we are dealing not with probabilities per se but with
probability densities.

Maximum A Posteriori (MAP)

As its name suggests, the Bayesian method of Maximum A Posteriori (or MAP)
maximises the posterior probability (or density), Pr(H|D), or equivalently, the prior
multiplied by likelihood. When all attributes are discrete (categorical), this is statisti-
cally invariant under re-parameterisation. However, when at least one of the
attributes is continuous, then both Pr(H) and Pr(H|D) are densities. As an example, if
the hypothesis, H, concerns a height, then Pr(H) and Pr(H|D) must be measured in
units of 1/length, or length−1, in order that the integral of the prior along the height
axis gives a probability of 1. In other words, if we’re multiplying something by a
height (in cm) and the answer is 1, then that something must be in cm−1. This gives
us some insight into why MAP is generally not statistically invariant. The Bayesian
prior on a length will look quite different to the prior on its square, an area—and,
indeed, their maxima and minima, etc. will generally be different. The statistical like-
lihood (Pr(D|H)) is invariant but the prior (Pr(H)) isn’t, so Pr(H) · Pr(D|H) and the
posterior also won’t be invariant in general, and therefore the maximum of the
posterior—namely, the MAP estimate—also won’t be invariant (Dowe, Oliver and
Wallace 1996; Wallace and Dowe 1999b, secs 1.2–1.3, 1999c, sec 2, col. 1, 2000, secs 2
and 6.1; Comley and Dowe 2005, sec. 11.3.1; Dowe 2008, sec. 0.2.3). The similarity
between MAP and Maximum Likelihood means that MAP inherits the statistical
inconsistency results of Maximum Likelihood described in section “Maximum
Likelihood” for problems where the amount of data per parameter is bounded above.
Even when all attributes are discrete (and so issues of density do not arise), even then
MAP can inherit the statistical inconsistency tendencies of Maximum Likelihood for
problems where the amount of data per parameter is bounded above (Dowe 2008,
footnote 158).

The good news is that if we re-visit MAP very carefully and make sure that our poste-
rior is a probability and not a density, then we arrive at something which is statistically
invariant. If we take some more care (when required), then we also get statistical
consistency for the hard problems where the amount of data per parameter is bounded
above. This approach is Minimum Message Length (MML) (Wallace and Boulton
1968, 1975; Wallace 2005), which we will discuss in section “Minimum Message Length
(MML)”. But, first, we all too briefly gloss over some of the many other approaches to
inference in the next section and then—in the remainder of section “Some Methods of
Inference: Maximum Likelihood, AIC, (Bayesian) MAP, etc.”—touch on other issues
pertaining to inference.
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444 D. L. Dowe

Other: Other Classical, Other Bayesian, etc.

In this section, we attempt to mention some of the myriad of alternative estimation
techniques used in the literature and not yet discussed above. One can only do one’s
best with such an impossible task, but it is worth re-emphasising the point from section
“Bayesianism vs. Non-Bayesianism” that the community remains far from unified in
how best to do inference. The classical (non-Bayesian) community is far from unified.
And, whether or not MML is “the” way to do inference, the Bayesian community
currently remains a long way from unified.

Schwarz’s (1978) Bayesian Information Criterion (BIC) is independent from and
coincidentally equivalent to the 1978 version of Minimum Description Length (MDL)
(Rissanen 1978) (which, in turn, shares much in common with MML, as per Wallace
and Dowe (1999a, secs 6.2 and 7, 1999b), Wallace (2005, sec. 10.2), Comley and Dowe
(2005, sec. 11.4.3) and Dowe (2008, sec. 0.2.2), although MML pre-dates MDL by a
decade (Wallace and Dowe 1999a, sec. 1, 271, col. 1; Comley and Dowe 2005, sec. 11.1;
Dowe 2008, secs 0.2.2–0.2.4)). Recall from section “Akaike’s Information Criterion
(AIC) and Penalised (Maximum) Likelihood” that AIC was a penalised likelihood of
the form −log Pr(D|H) + k where k is the number of free parameters. BIC advocates
minimising −log Pr(D|H) +  log N, where N is the sample size of the data. For suffi-
ciently large N (indeed, once N ≥ 8 > e2 and log N > 2), we see that the BIC penalty of

 log N becomes greater than the AIC penalty of k. So, for larger sample sizes, BIC
tends to give a larger (and, we contend, more appropriate) penalty than AIC.

The Vapnik–Chervonenkis dimension, Structural Risk Minimisation (SRM) and
Support Vector Machine (SVM) approach (Vapnik 1995) is a (classical or) non-
Bayesian approach which came from the machine learning community and is only
slowly working its way through statistics and econometrics. That said, there have
been efforts to do this in a Bayesian way and also in a (Bayesian) MML way (Vapnik
1995, sec. 4.6; Tan and Dowe 2004; Dowe 2007, 2008, sec. 0.2.2), including explicitly
modelling (Dowe 2008, footnote 53, fourth way, 527–528) the distribution of all the
variables, including the input variables.

The minimum expected Kullback–Leibler distance (MEKLD, or MEKL, or minEKL)
estimator (Dowe et al. 1998; Wallace 2005, secs 4.7–4.9; Dowe, Gardner and Oppy
2007, sec. 6.1.4) is a Bayesian estimator which uses the notion of Kullback–Leibler
distance (from section “Kullback–Leibler Divergence (or Kullback–Leibler Distance)”)
to attempt to optimise the (average) log-loss probabilistic score from section
“Probabilistic Inference—vs. Mere Non-probabilistic Classification” on future, as yet
unseen, data. It does this by taking the Bayesian posterior distribution Pr(H|D) over
hypotheses H to then get a distribution f(y|D) on “expected” future data, y. Having such
a probability distribution on the “expected” future data, it then seeks a hypothesis H
which - in average expectation - optimises the “expected” log-loss penalty. The purpose
of minEKL is to be the best possible (Bayesian) predictor within the parameter space.
It is perhaps curious that this was the original motivation behind AIC (Akaike 1970,
1973), although Akaike tried to do this without use of a Bayesian prior. A comparison
between MEKLD and AIC is given in Dowe, Gardner and Oppy (2007, sec. 6.1.4).
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We now say something about hypothesis testing (as a form of inference), experimen-
tal design and prediction in the next three sections respectively, and then talk about
Bayesian Minimum Message Length (MML) inference in section “Minimum Message
Length (MML)”.

Hypothesis Testing

Recall from section “Maximum Likelihood” that Maximum Likelihood tries to choose
a hypothesis, H, to make the already observed data, D, as retrospectively likely as possi-
ble. Classical hypothesis tests do the same curious thing, trying to say how probable the
observed data would be if the actual hypothesis were true—rather than how probable
the hypothesis is given the data. As such, classical hypothesis tests—like maximum like-
lihood—often neglect how complicated or even tightly-peaked the hypothesis is (Dowe
2008, sec. 1 and footnotes 57 and 58). In fairness, the classical hypothesis test tries to
objectively side-step any use of Bayesian priors, although they often (inadvertently?)
include a prior which can be slightly curious (Dowe 2008, sec. 0.2.5).

Experimental Design, Data Collection Protocol and Likelihood Principle

This (brief) section is partly to mention that any experiment should be designed
“randomly” to collect as much information as possible (Dowe 2008, sec. 0.2.7, 544).
Whatever the data collection protocol, the statistical likelihood principle says, roughly,
that the likelihood function Pr(D|H) is all that we need to know about the data (Berger
and Wolpert 1988; Grossman forthcoming). As such, Maximum Likelihood will always
honour the likelihood principle. In changing from a Binomial protocol (when we
sample a fixed number of times) to a Negative Binomial protocol (when we sample
until a fixed number of successes), MML (from section “Minimum Message Length
(MML)”) gives at worst a minor violation of the likelihood principle (Wallace
2005, sec. 5.8) (although I am not convinced that this constitutes a valid criticism of
MML). But, as discussed in Wallace and Dowe (1999b, sec. 2.3.5) and Wallace (2005,
sec. 10.2.2), some inference methods—even those doing all they can to avoid using a
Bayesian prior—can be in substantial violation of the likelihood principle.

Having said above something one could interpret as meaning that we wish to
design our experiment to have the maximum expected information gain, over the
next 16 lines or so I’d now like to change tack and put forward something of a
paradox—or the making thereof. Consider experiments (or tests) T1, T2, …, Ts, …,

Ti, … such that, for some n > 0, experiment Ti has probability  of yielding 0

information. The experiments can be independent of one another, and perhaps are

such that with probability  experiment Ti yields  bits, thus

yielding an expected information gain from experiment Ti of

 bits. Letting s ≥ 1, the probability that, starting
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446 D. L. Dowe

with experiment Ts, all the experiments Ts, Ts + 1, … yield 0 information is

 On the other hand, the

expected information gain from starting with experiment Ts is 2s + 2s + 1 + … = ∞.

Paradoxically, for a finite number (say j) of experiments, Ts, …, Ts + j − 1, the larger

the value of s that we start with, the larger our expected information gain but the
greater the probability that all the experiments from Ts to Ts+j−1 and forever will all

yield 0 information. With n > 0, this probability  of getting no information
rapidly approaches 1 for increasing s. We  can extend the paradox by averaging the
information gains of Ts, Ts+1, …, Tu and then letting u tend to infinity. As u gets

larger, the expected average information gain (divided by (u-s+1)) tends to infinity
(on the one hand) but—(on the other hand) curiously—the probability that the aver-
age information gain (divided by (u–s+1)) is arbitrarily close to 0 becomes arbitrarily
close to 1.

And, last, while not about design per se but rather about protocol, an issue about the
reporting and collection of results (rather than directly about the collection of data) is
the unfortunate trend of not reporting negative results (Dowe 2008, sec. 0.2.5) and of
only reporting positive results. There seems to be some sort of widespread—but fortu-
nately not universal—implicit result-reporting protocol in some communities
whereby negative results only get to be published when following on in response to a
reported positive result. This can easily become data censoring of a primitive kind and
can give rise to all sorts of bias. (Although it is not in a medical area, this view is
presumably shared by the recently formed Journal of Interesting Negative Results in
Natural Language Processing.)

Prediction

Recall the distinction(s) between inference and prediction in section “(Probabilistic)
Prediction” (Wallace and Dowe 1999a, sec. 8; Wallace 2005, sec. 10.1.2). As in the AIC
approach of Akaike (1970, 1973), the classical approach to prediction seems to be to
find the single best theory—and use that for both inference and prediction. One could
argue that it makes more sense intuitively—even in the classical (non-Bayesian)
approach, such as Akaike’s—to combine several theories which perform similarly
(Wallace and Dowe 1999c, sec. 4). Empirical results would certainly suggest (Dowe,
Gardner and Oppy 2007) that this is true in the case of AIC.

The Bayesian approach to prediction consists of taking every available theory in the
parameter space and weighting it according to its posterior probability, and then using
this to get a predictive distribution over expected future data. The resultant distribu-
tion will not necessarily be in the original parameter space—e.g. if our distribution is
known to be N(0, σ2) and we consider all such possible distributions weighted by the
posterior density of σ2 (or, equivalently, of σ), the result will be an infinite mixture of
Normal distributions.

Note that where the predictive distribution is not in the parameter space, the best fit
to the predictive distribution from within the parameter space turns out to be the
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MEKLD estimator (Dowe et al. 1998; Wallace 2005, secs 4.7–4.9; Dowe, Gardner and
Oppy 2007, sec. 6.1.4) from section “Other: Other Classical, Other Bayesian, etc.”. This
makes sense, because MEKLD gives the best expected log-loss score (amongst hypoth-
eses within the parameter space) and also because (recalling section “Probabilistic
Inference—vs. Mere Non-probabilistic Classification”) log-loss scoring rewards the
true probabilities (if known) and appears to be unique in doing so (Dowe 2008, sec.
0.2.5).

Where there is one outstandingly good theory, then prediction and inference come
very much to the same thing (Dowe 2008, sec. 0.3.1). However, they can vary when there
is no outstandingly good theory, whereupon it is a good idea for predictive purposes to
make a weighted combination of good inferences (Wallace and Dowe 1999a, sec. 8,
1999c, sec. 4), ideally—where feasible—weighting over the entire posterior.

Minimum Message Length (MML)

From Equation 2 and section “Bayes’s Theorem and Bayesianism”, we have that choos-
ing H to maximise Pr(H|D) is equivalent to choosing H to maximise Pr(H) · Pr(D|H).
By the monotonicity of the logarithm function, this is equivalent to minimising −
log(Pr(H) · Pr(D|H)) = −logPr(H) −logPr(D|H). Simply changing notation, we can
equivalently write 

All data-sets—or at least all the ones I’ve used and/or heard of—are finite. This is
partly so because, as mentioned at the start of section “Desiderata in (Probabilistic)
Inference and (Probabilistic) Prediction”, all heights and weights, etc. are measured to
finite accuracy and finitely many decimal places (Wallace and Dowe 1993, 1–3, 1994,
38, secs 2 and 2.1, 2000, sec. 2, 74, col. 2; Dowe, Allison et al. 1996, sec. 2; Kissane,
Bloch, Dowe et al. 1996, 651; Comley and Dowe 2003, sec. 9; Fitzgibbon, Dowe and
Vahid 2004, eqn (19); Comley and Dowe 2005, sec. 11.3.3, 270; Wallace 2005, secs 3.1.1
and 3.3; Dowe, Gardner and Oppy 2007; Dowe 2008, sec. 0.2.4).

Given that heights, weights and other measurements are measured and recorded
to finite accuracy, a fact often neglected by statisticians is that the likelihood,
Pr(D|H), can be viewed as a probability rather than as a density (of zero point mass).
Let us clarify with an example. The probability of measuring a height of (say) 1.84 m
is the probability that the height is between (say) 1.835 and 1.845 m. So, Pr(D|H) is a
probability (as measured), even if (in some sort of theory) perhaps a density. In the
case that our parameter space is a continuum—such as the mean and variance, µ
and σ2, of heights—if we suitably quantise this down into at most countably many
permissible (or usable) estimates, then Pr(H) will also correspond to a probability
and not a density (and we can even argue that the standard deviation, σ should be
bounded below by a multiple of the measurement accuracy (Wallace and Dowe
1994, sec. 2.1; Dowe, Allison et al. 1996, sec. 2; Kissane, Bloch, Dowe et al. 1996, 651;
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448 D. L. Dowe

Comley and Dowe 2003, sec. 9; Comley and Dowe 2005, sec. 11.3.3; Dowe 2008, sec.
0.2.4)). As alluded to at the end of section “Maximum A Posteriori (MAP)”, this will
give us Pr(H), Pr(D|H) and (consequently) Pr(H|D) all as probabilities—and not as
densities.

Information Theory, Compression and MML

It should be clear to the reader from section “Maximum A Posteriori (MAP)” and/or
from Dowe (2008, footnote 158 and sec. 0.2.3) that MML is, in general, different from
MAP.

Let us now mention a result from information theory Shannon (1948) that an
event ei of probability pi can be encoded in a prefix code by a code-word of length li
where −log pi ≈ li < (−log pi) + 1. This can be achieved with a Huffman code, which
successively joins the two least probable events together and iterates. For details of code
construction, see Wallace (2005, chap. 2, especially sec. 2.1), including the example in
Wallace (2005, sec. 2.1.4 and fig. 2.5). As a simple example, if we have {p1, p2, p3, p4, p5}
= {1/2, 1/4, 1/16, 1/16, 1/8} and we are considering binary codes, then a Huffman code
would first join e3 and e4 (call this e3,4) to give a probability of 1/16 + 1/16 = 1/8, then
next join e3,4 and e5 (call this e3,4,5) to give a probability of 1/8 + 1/8 = 1/4, then join e2
to e3,4,5 (call this e2,3,4,5) to give a probability of 1/4 + 1/4 = 1/2, and then finally join e1
and e2,3,4,5, resulting in a probability of 1/2 + 1/2 = 1, whereupon it would stop. With
“up” branches being given the bit 0 and “down” branches being given the bit 1, this
would result in a binary code tree as in Figure 1 where e1, e2, e3, e4 and e5 respectively
have the code-words 0, 10, 1100, 1101 and 111. In this friendly example, we note that
li = −log2 pi in each case.
Figure 1 A simple Huffman code tree.

Given that an event of probability pi can be represented by a code-word of length
li, looking at Equation 3, we see that −logPr(H) can be regarded as the length of a
message for encoding a hypothesis and −logPr(D|H) can be regarded as the length
of a message for encoding the data given this hypothesis. So, maximising the poste-
rior probability, Pr(H|D), is equivalent to minimising the length of a two-part

Figure 1 A simple Huffman code tree.
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Social Epistemology 449

message, −logPr(H) –logPr(D|H), for jointly encoding the hypothesis and the
observed data given this hypothesis. Hence the name minimum message length
(MML). Given that MML is maximising a probability and not a density, and given
the benefits of this (as per section “Properties of MML (and Approximations)”),
MML can be thought of as MAP done properly (Wallace and Dowe 1999b, secs 1.2–
1.3, 1999c, sec. 2, col. 1, 2000, secs 2 and 6.1; Comley and Dowe 2005, sec. 11.3.1;
Dowe, Gardner and Oppy 2007, sec. 5.1, coding prior; Dowe 2008, footnote 158).

Philosophers wanting to know more about MML might wish to read Wallace (2005),
Dowe, Gardner and Oppy (2007) and Dowe and Oppy (2001). Some of the many other
articles of interest include Wallace and Boulton (1968), Comley and Dowe (2003,
2005), Wallace and Dowe (1999a) and Dowe (2008).

Ockham’s Razor and MML

We recall the idea from Ockham’s razor—or a common interpretation thereof—that
if two theories fit the data equally well then one should prefer the simpler. Given
MML’s desire to quantitatively find (relatively) simple theories that fit the data (rela-
tively) well, one can regard MML as being not only a quantitative version of Ockham’s
razor, but perhaps also a generalisation. Where Ockham’s razor only seems to tell us
which theory to prefer when both fit the data equally well, MML gives us a quantitative
trade-off between simplicity and goodness of fit.

Figure 2 gives an example of two rival hypotheses, H1 and H2, for the data. We see
that the encoding of Data given H2 is shorter than that of Data given H1, meaning
that H2 fits the data with a better log-likelihood than did H1. However, we also see
that the code length for H1 is far shorter than that of H2, meaning that H1 is far more
probable a priori (or simpler) than H2. In this example, the shorter two-part message
length is the explanation involving H1, and so it would be the preferred MML infer-
ence. For further comments on MML and Ockham’s razor, see, e.g. Needham and
Dowe (2001), Comley and Dowe (2005, sec. 11.4.3) and Dowe (2008, footnotes 18
and 182).
Figure 2 Two-part message lengths for two rival hypotheses for some Data.

Turing Machines, Algorithmic Information Theory and MML

A Turing machine (TM) (Wallace 2005, sec. 2.2.1) is an abstract mathematical model
of a computer program. It can be written in a language from a certain alphabet of
symbols (such as 1 and (blank) “ ”). We assume that Turing machines have a read/write

Figure 2 Two-part message lengths for two rival hypotheses for some Data.
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450 D. L. Dowe

head on an infinitely long tape. A Turing machine in a given state (with the read/write
head) reading a certain symbol either moves to the left (L) or to the right (R) or stays
where it is and writes a specified symbol. The instruction set for a Turing machine can
be written as: 

Without loss of generality we can assume that the alphabet is the binary alphabet
{0,1}, whereupon the instruction set for a Turing machine can be written as: 

f : States × Symbols → States × ({L, R} ∪ Symbols).

Any known computer program can be represented by a Turing Machine. Universal
Turing Machines (UTMs) are like compilers and can be made to emulate any Turing
Machine (TM).

An example of a Turing machine would be a program which, for some a0 and a1,
when given any input x, calculates (or outputs) a0 + a1x. In this case, x would input in
binary (base 2), and the output would be the binary representation of a0 + a1x.

A Universal Turing machine (UTM) (Wallace, 2005, sec. 2.2.5) is a Turing machine
which can simulate any other Turing machine. So, if U is a UTM and M is a TM, then
there is some input cM such that for any string s, U(cMs) = M(s) and the output from U
when given the input cMs is identical to the output from M when given input s. In any
other words, given any TM M, there is an emulation program (or code) cM so that once
U is input cM it forever after behaves as though it were M.

The notion of algorithmic information theory (or Kolmogorov complexity)
(Solomonoff 1964; Kolmogorov 1965; Chaitin 1966) of a string x is the length of the
shortest input lx to a UTM U such that U(lx) = x—i.e. U will output x if given input lx.
Informally, if the length of lx is the same as (or larger than) the length of x, then we can
say that x is random in some sense. Similarly, if the length of lx is much less than the
length of x, then we can say that x is non-random.

Of these works from the mid-1960s, Kolmogorov (1965) and Chaitin (1966) study
this important new concept while Solomonoff (1964) is also interested in using it for
prediction. This work from the mid-1960s was very shortly before the first appearance
of MML (Wallace and Boulton 1968). And just as MML can be regarded as a quantita-
tive version of Ockham’s razor (or as a generalisation thereof) as per section “Ockham’s
Razor and MML” and Figure 2, MML can also be regarded as (two-part) Kolmogorov
complexity (Wallace and Dowe 1999a; Comley and Dowe 2005; sec. 11.4.3; Wallace
2005, chap. 2; Dowe 2008, secs 0.2.2, 0.2.7 and 0.3.1). Here, the first (“hypothesis”) part
of the message tells the Turing machine what hypothesis program is to be emulated but
no output is written yet. The bit string in the second (“data given hypothesis”) part of
the message then causes the emulation program to output the original data string.

Note the analogy between MML as information theory in section “Information
Theory, Compression and MML” and MML as algorithmic information theory in this
section. And, very relatedly, note that the Kolmogorov complexity is dependent on the
choice of UTM, and that this is a Bayesian choice (Wallace and Dowe 1999a, secs 2.4
and 7; Comley and Dowe 2005, sec 11.3.2; Dowe 2008, footnote 133).

f States Symbols States L R Symbols: ,× → × ∪({ } )
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Social Epistemology 451

Properties of MML (and Approximations)

The approach obtained from strictly minimising the message length as above is called
Strict Minimum Message Length—or Strict MML, or SMML (Wallace and Boulton
1975; Wallace and Freeman 1987; Wallace and Dowe 1999a, sec. 6.1; Wallace 2005,
chap. 3; Dowe, Gardner and Oppy 2007, sec. 5; Dowe 2008, footnotes 12, 153, 158 and
196 and sec. 0.2.2). Despite the many desirable properties of SMML (Wallace 2005,
sec. 3.4), it can be computationally intractable even for relatively simple problems
(Wallace 2005, sec. 3.2.9). (Historically, Strict MML (Wallace and Boulton 1975) came
7 years after MML (Wallace and Boulton 1968).) In practice, we often use a variety of
applications, and these are also known to share many of the desirable properties of
SMML.

Given data, D, the MMLD (or I1D) approximation (Wallace 2005, secs 4.10 and
4.12.2; Dowe 2008, sec. 0.2.2) seeks a region R which minimises 

The length of the first part is the negative log of the probability mass inside the region,
R. The length of the second part is the (prior-weighted) average over the region R of the
log-likelihood of the data, D.

An earlier approximation similar in motivation which actually inspired MMLD is
the Wallace-Freeman approximation (Wallace and Dowe 1999a, sec. 6.1.2; Wallace
2005, chap. 5), 

which was first published in the statistics literature (Wallace and Freeman 1987).

The term  gives a measure of uncertainty or quantisation in

hypothesis space, where d is the number of continuous-valued parameters, κd is a

constant (Fitzgibbon, Dowe and Vahid 2004, 441; Wallace 2005, table 3.4) between 1/

12 and 1/(2πe) and the Fisher information, Fisher , is as described in section

“Bayesianism vs. Non-Bayesianism”. (More specifically, in maths-speak, κd corre-

sponds to the geometry of the optimally tesselating—or tiling—Voronoi region in d
dimensions. In plainspeak, circles are compact but don’t tile because they leave gaps,

squares tile the plane, but hexagons tile optimally. κ2 = 5/(36 ) corresponds to the

geometry of a hexagon.) The term d/2 is the round-off in the second part of the message
due to the uncertainty in the parameter estimate.
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452 D. L. Dowe

Perhaps the first thing to mention about Strict MML is its generality (Wallace 2005,
sec. 3.4.3), that it is always defined—as likewise is Kolmogorov complexity. Strict
MML, Wallace–Freeman and MMLD are all statistically invariant (Wallace 2005), as
also are the estimators from Dowe (2008, sec. 0.2.2, footnotes 64 and 65) alluded to
near the end of the section “Probabilistic Inference—vs. Mere Non-probabilistic
Classification”. Various theoretical results exist about the statistical consistency and
efficiency of Strict MML (Wallace and Freeman 1987, 241; Barron and Cover 1991;
Wallace 1996, 2005, sec. 3.4.5; Dowe, Gardner and Oppy 2007, sec. 5.3.4), and specific
examples demonstrate the statistical consistency of Wallace–Freeman (Dowe and
Wallace 1997) and similar approximations (Wallace and Freeman 1987; Wallace 1995).
Many papers (e.g. Wallace and Freeman 1992; Wallace and Dowe 1993, 1999a, sec. 9,
1999b; Wallace 1995; Dowe, Oliver and Wallace 1996; Fitzgibbon, Dowe and Vahid
2004; Tan and Dowe 2002, 2003, 2004; Dowe, Gardner and Oppy 2007) attest to excel-
lent small-sample performances of the Wallace–Freeman (or similar) approximation.

Another, possibly prophetic, thing to mention is that Strict MML first appeared in
1975 (Wallace and Boulton 1975) and the approximation from Equation 5 with the
lattice constants (κd) first appeared in 1987 (Wallace and Freeman 1987), where κ2
corresponds to the hexagon. When the trinomial (or 3-state multinomial) distribu-
tion—which has d = 2, as the parameters are p1 and p2 (because p3 = 1 − p1 − p2)—was
first done using Strict MML well over a decade later, with a uniform prior and N = 60
data-points, the partition (of the triangle) for the trinomial distribution turned out to
contain an absolute abundance of hexagons (Wallace 2005, fig. 3.1, 166).

Problems with Increasing Numbers of Parameters

Consider the univariate polynomial regression problem of Dowe, Gardner and Oppy
(2007, sec. 6.2) and Dowe (2008, sec. 0.2.3). Given data (x, y)j = 1,…,N, we seek d, a0, …,

ad, σ2 such that  This is a problem of nested models (or sub-

families) (Dowe, Gardner and Oppy, 2007, sec. 7.1), in that (e.g.) every quadratic is also
a cubic.

Studies (Wallace 1997; Dowe 2008, ref. 281; Dowe, Gardner and Oppy 2007, sec.
6.2.1; Dowe 2008, ref. 281) show that the classical Maximum Likelihood and AIC
methods from sections “Maximum Likelihood” and “Akaike’s Information Criterion
(AIC) and Penalised (Maximum) Likelihood” over-fit, over-estimating the model
order and (as in the section “Maximum Likelihood”) under-estimating the variance,
σ2. MML gets the model order correct more often, sometimes under-estimating it
(Dowe, 2008, footnote 153) and certainly getting a smaller squared error in prediction.

A different problem with nested models is that of econometric autoregressive time
series. Models with terms from only the recent past are a special case of models includ-
ing all of these terms and terms from the more distant past. Studies (Fitzgibbon, Dowe
and Vahid 2004; Dowe, Gardner and Oppy 2007, sec. 6.2.2) similarly show the classical
Maximum Likelihood and AIC methods over-fitting, and MML managing to give
better predictions using a lower model order.
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Social Epistemology 453

Amount of Data per Parameter Bounded Above

In the classic Neyman–Scott problem (Neyman and Scott 1948; Dowe and Wallace
1997; Wallace 2005, secs 4.2–4.5; Dowe, Gardner and Oppy 2007, sec. 6.1; Dowe 2008,
secs 0.2.5 and 0.2.3), we measure N people’s heights J times each (say J = 2) and then
infer 

1. the heights µ1, …, µN of each of the N people,
2. the accuracy (σ) of the measuring instrument.

We have JN measurements from which we need to estimate N + 1 parameters. JN/(N
+ 1) ≤ J, so the amount of data per parameter is bounded above (by J), the notion of
which we flagged in section “Statistical Consistency” 

and so for fixed J as N → ∞ we have that Maximum Likelihood is statistically inconsis-
tent—under-estimating σ and “finding” patterns that aren’t there. As alluded to in the
section “Properties of MML (and Approximations)”, MML remains statistically
consistent for the Neyman–Scott problem (Dowe and Wallace 1997).

What makes the Neyman–Scott problem difficult is that, even though the amount of
data is increasing unboundedly, the amount of data per parameter is bounded above.
This is sufficient to preserve the small sample bias from section “Maximum Likelihood”.
This is somewhat awful for Maximum Likelihood and Akaike’s Information Criterion
(AIC).

Other examples of the amount of data being bounded above include 

● latent factor analysis—single (Wallace and Freeman 1992; Edwards and Dowe 1998)
and multiple (Wallace 1995, 2005, sec. 6.9; Dowe, Gardner and Oppy 2007, sec.
6.1.3; Dowe 2008, sec. 0.2.3), and

● fully-parameterised mixture modelling (Wallace and Dowe 2000, sec. 4.3; Wallace
2005, sec. 6.8; Dowe, Gardner and Oppy 2007, sec. 6.1.3; Dowe 2008, sec. 0.2.5).

These problems are more commonplace than one might at first realise. The factors
from latent factor analysis correspond to notions like I.Q. or octane rating. More
specifically, if we get N people to sit J aptitude tests or if we test N petrols on J engines,
then what we wish to infer are statistical factors—such as I.Q. and octane rating. These
I.Q.s (for each of the N people in turn) and the octane ratings (for each of the N petrols
in turn) are known as the factor scores. But we also need to estimate the factor loads,
or the load vector. This basically tells us how important, relevant or otherwise—and,
if relevant, how difficult/easy—each aptitude test or engine test is. Both Maximum
Likelihood and AIC again struggle in such cases, with Akaike (1987) himself adopting
a Bayesian prior—actually, a “prior” which changes as the sample size changes (Akaike
1987, sec. 5, 325; Dowe, Gardner and Oppy 2007, sec. 6.1.3 and footnote 22)—for
latent factor analysis. Empirical studies (Wallace and Freeman 1992; Wallace 1995)
again show MML outperforming these methods—even when they have been helped

ˆ ,σ σMaximum Likelihood
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454 D. L. Dowe

out with Bayesian priors—and doing so with simpler models. For these types of
problems (with data per parameter bounded above), classical methods often appeal to
Bayesianism for help (Wallace 2005, sec. 4.5).

By acknowledging uncertainty (or quantising) when doing parameter estimation,
MML is statistically consistent on all of these problems. MML is about inference,
seeking the truth (Dowe 2008, secs 0.2.4 and 0.2.6). (Indeed, Steven L. Gardner
would like to relate MML to the notion in philosophy of approximate truth.) It gives
a statistically invariant—and statistically consistent—Bayesian method of point esti-
mation. It gives general consistency results where classical non-Bayesian approaches
are known to break down. It is also efficient, working well on all real inference prob-
lems currently known to the author.

The above evidence and experience has led to the following two conjectures.

Conjecture 1 (Dowe et al. 1998, 93; Edwards and Dowe 1998, sec. 5.3; Wallace and
Dowe 1999a, 282, 2000, sec. 5; Comley and Dowe 2005, sec. 11.3.1, 269) Only MML
and very closely-related Bayesian methods are in general both statistically consistent
and invariant.

Conjecture 2 (Back-up Conjecture) (Dowe, Gardner and Oppy 2007, sec. 8; Dowe 2008,
sec. 0.2.5) If there are any such non-Bayesian methods, they will be far less efficient
than MML.

Before proceeding to a final discussion and conclusion, it seems appropriate to first
mention some medical and humanities applications of MML.

Medical, Biological and Other Applications of MML

Some Medical-related Applications of MML

The second application ever of MML to real-world data was in a classification of
depression (Pilowsky, Levine and Boulton 1969). Studies classifying and clustering
grieving families include (Kissane, Bloch, Dowe et al. 1996; Kissane, Bloch, Onghena
et al. 1996), with a classification of sub-groups within autism given in Prior et al. (1998)
and a classification of distress syndromes in Clarke et al. (2003). Another study of a
diagnostic nature was McKenzie et al. (1993).

A fairly routine application of some MML clustering software (Edgoose, Allison and
Dowe 1998, sec. 6; Dowe, Allison et al. 1996, sec. 5, 253; Wallace 1998, sec. 4.2; Dowe
2008, footnote 85) gave that proteins apparently fold with the Helices (and Extendeds)
forming first and then the “Other” turn classes forming subsequently to accommodate
these structures. Some further applications of MML clustering are cited in Wallace and
Dowe (1994) (and Dowe 2008).

DNA microarray data (Tan, Dowe and Dix 2007) can be studied by MML (Dowe
2008, sec. 0.2.7, footnote 196), and MML image analysis (Wallace 1998; Visser and
Dowe 2007) is also ripe for medical applications.

And, although it doesn’t just apply to medical data, if we take a noise-free unstruc-
tured, unnormalised database of sufficient size and then apply MML Bayesian nets
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Social Epistemology 455

(Comley and Dowe 2003, 2005; Dowe 2008, sec. 0.2.5) (from section “Kullback–
Leibler Divergence (or Kullback–Leibler Distance)”) to this, we get the elegant result
that the MML Bayesian net inference will result in a normalised database (Dowe 2008,
sec. 0.2.6, footnote 187). If there is sufficient data, this will be a full normalisation.

Some Applications of MML in the Humanities

Many applications of MML to real-world data-sets and a variety of subject areas exist—
see, e.g. Wallace (2005), Dowe (2008) and elsewhere. For the curious reader, I’d like to
give some admittedly all too brief pointers to reading on MML in philosophy and
humanities. These include 

● MML and an argument that—contrary to widely-held views in physics, philosophy
and many fields—entropy is not time’s arrow (Wallace 2005, chap. 8; Dowe 2008,
sec. 0.2.5),

● MML, existence of “miracles” (Dowe 2008, sec. 0.2.7), cosmological arguments and
“Intelligent Design” (I.D.),

● MML and linguistics—inferring “dead” languages (Ooi and Dowe 2005; Dowe
2008, sec. 0.2.4),

● MML, Kolmogorov complexity (Wallace and Dowe 1999a), measures of “intelli-
gence” (Dowe and Hajek 1998; Hernandez-Orallo 2000; Legg and Hutter 2007;
Dowe 2008, sec. 0.2.5) and a possible variation on the (so-called) Lucas–Penrose
argument in the philosophy of mind that humans are (supposedly) more intelligent
than machines can be (Dowe 2008, footnotes 70–71 and sec. 0.2.3),

● MML and the Efficient Markets Hypothesis, in which appeals to the relationship
between MML and Kolmogorov complexity (as per section “Turing Machines,
Algorithmic Information Theory and MML”) tell us that markets are not provably
efficient (Dowe and Korb 1996; Wallace 2005, sec. 9.1, 387; Dowe 2008, sec. 0.2.5),
and

● varying the elusive model paradox (Dowe 2008, footnote 211) so that each bit (0 or
1) in a sequence of bits is to be the bit which was not predicted to be the (most prob-
able) next bit in the sequence. (Recalling sections “(Probabilistic) Prediction” and
“Prediction”, we can do this by inferring a model from the past bits—as per the orig-
inal elusive model paradox—or by combining several models and predicting.) For
mathematicians and computer scientists, this gives us a new non-computable
number. In terms of game theory, psychology, sociology and making of “thriller”
movies with lots of plot “twists and turns”, this relates to leaving a trail so that those
trying to follow you will (almost) always—or at least as often as possible—be
surprised by your next step.

Discussion and Conclusion

When seeking to draw conclusions from medical (or other) data evidence, sometimes
the problem is particularly friendly—there are few parameters to be estimated, there is
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456 D. L. Dowe

an abundance of data and there is relatively little noise in the data. Inference here
should be sound, the best predictor should be close to the derived inference, and the
reported power of hypothesis tests should not be unreasonable.

But in the not uncommon case that the amount of data per parameter is limited,
great care should be taken. Not only do the classical approaches to inference start to
differ, but the ones in common usage at the time of writing tend to over-estimate the
relevance of the explanatory variables and under-estimate the noise. Answers
obtained by classical methods will typically improve when replaced by the Bayesian
MML approach, and this seems to hold regardless of sample size. Here, care should
be taken in the choice of a Bayesian prior, lest one be accused of fudging one’s
results.

The seeming objectivity of the classical approach versus the seeming more reliable
results from the Bayesian MML approach leaves us with something of a quandary. As
a first recommendation, at the very least, the data analyst should be aware of these issues
and should ideally at least mention something along these general lines when publish-
ing. As a second recommendation, if one is using a classical approach, then—where
possible—the data should also be analysed in a Bayesian (MML) way alongside what-
ever classical analysis is chosen. If one is understandably concerned about (e.g.) how
one’s peers might regard a Bayesian analysis, one can repeat the study with a different
set of Bayesian priors. One can then report discrepancies and—one hopes—similarities
amongst different approaches. As a third recommendation, probabilistic predictions
should be made and—given the apparent uniqueness result(s) (from the section
“Probabilistic Inference—vs. Mere Non-probabilistic Classification” and Dowe (2008,
footnote 175))—should probably be scored with log-loss.
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Notes
1

[1] If tan−1 ranges from −π/2 to π/2, then we take the negative square root for x < 0. We can write

this more properly as (κ, θ) = (sign(x) ·  tan−1(y/x)).x y2 2+ ,

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
M
o
n
a
s
h
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
0
7
:
5
0
 
1
7
 
D
e
c
e
m
b
e
r
 
2
0
0
8



Social Epistemology 457

References

Akaike, H. 1970. Statistical prediction information. Annals of the Institute of Statistical Mathematics
22: 203–17.

———. 1973. Information theory and an extension of the maximum likelihood principle. In
Proceedings of the 2nd international symposium on information theory, edited by B.N. Petrov
and F. Csaki, pp. 267–81. Budapest: Akademiai Kiado.

———. 1987. Factor Analysis and AIC. Psychometrika 52 (3): 317–332.
Barron, A. R., and T. M. Cover. 1991. Minimum complexity density estimation. IEEE Transactions

on Information Theory 37: 1034–54.
Berger, J. O., and R. L. Wolpert. 1988. The likelihood principle, 2nd edition, Institute of Mathematical

Statistics monograph series. California, USA: Hayward.
Bernardo, J. M., and A. F. M. Smith. 1994. Bayesian theory. New York: Wiley.
Chaitin, G. J. 1966. On the length of programs for computing finite sequences. Journal of the Association

for Computing Machinery 13: 547–69.
Clarke, D. M., G. C. Smith, D. L. Dowe, and D. P. McKenzie. 2003. An empirically-derived taxon-

omy of common distress syndromes in the medically ill. Journal of Psychosomatic Research 54:
323–30.

Comley, Joshua W., and David L. Dowe. 2003. General Bayesian networks and asymmetric languages.
Paper presented at Proceedings of the Hawaii International Conference on Statistics and
Related Fields, 5–8 June.

———. 2005. Minimum message length and generalized Bayesian nets with asymmetric languages.
Chap. 11 in Advances in minimum description length: Theory and applications (MDL hand-
book), edited by P. Grünwald, M. A. Pitt, and I. J. Myung, pp. 265–94. Cambridge, MA: MIT
Press.

Dowe, D. L. 2007. Discussion following “Hedging predictions in machine learning, A. Gammerman
and V. Vovk”. Computer Journal 2 (50): 167–8.

———. 2008. Foreword re C. S. Wallace. Computer Journal 51 (5): 523–560.
Dowe, D. L., L. Allison, T. I. Dix, L. Hunter, C. S. Wallace, and T. Edgoose. 1996. Circular clustering

of protein dihedral angles by minimum message length. In Pacific symposium on biocomputing
’96, edited by L. Hunter and T. Klein, pp. 242–55. Singapore: World Scientific.

Dowe, D. L., R. A. Baxter, J. J. Oliver, and C. S. Wallace. 1998. Point estimation using the Kullback–
Leibler loss function and MML. In Proceedings of the 2nd Pacific-Asia conference on research
and development in knowledge discovery and data mining (PAKDD-98), Volume 1394 of LNAI,
edited by X. Wu, Ramamohanarao Kotagiri, and K. Korb, pp. 87–95. Berlin: Springer.

Dowe, D. L., G. E. Farr, A. J. Hurst, and K. L. Lentin. 1996. Information-theoretic football tipping.
Paper presented at the 3rd Conference on Maths and Computers in Sport, pp. 233–41. [See
also Technical Report TR 96/297, Dept. Computer Science, Monash University, Australia
3168, Dec 1996.]

Dowe, D. L., S. Gardner, and G. R. Oppy. 2007. Bayes not bust! Why simplicity is no problem for
Bayesians. British Journal for the Philosophy of Science 58 (4): 709–54.

Dowe, D. L., and A. R. Hajek. 1998. A non-behavioural, computational extension to the Turing
test. Paper presented at the International Conference on Computational Intelligence &
Multimedia Applications (ICCIMA’98), Gippsland, Australia, February, pp. 101–6.

Dowe, D. L., and K. B. Korb. 1996. Conceptual difficulties with the efficient market hypothesis:
Towards a naturalized economics. Paper presented at the Proceedings on Information, Statistics
and Induction in Science (ISIS), pp. 212–23. [See also Technical Report TR 94/215, Dept.
Computer Science, Monash University, Australia 3168, 1994.]

Dowe, D. L., and N. Krusel. 1993. A decision tree model of bushfire activity. Technical report TR 93/
190, Dept. of Computer Science, Monash University, Clayton, Vic. 3800, Australia, September.

Dowe, D. L., J. J. Oliver, and C. S. Wallace. 1996. MML estimation of the parameters of the spherical
Fisher distribution. In Algorithmic learning theory, 7th international workshop, ALT ‘96,

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
M
o
n
a
s
h
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
0
7
:
5
0
 
1
7
 
D
e
c
e
m
b
e
r
 
2
0
0
8



458 D. L. Dowe

Sydney, Australia, October 1996, proceedings, Volume 1160 of Lecture notes in artificial intelli-
gence, edited by S. Arikawa and A. Sharma, pp. 213–227. Berlin: Springer.

Dowe, D. L., and G. R. Oppy. 2001. Universal Bayesian inference? Behavioral and Brain Sciences
(BBS) 24 (4): 662–3.

Dowe, D. L., and C. S. Wallace. 1997. Resolving the Neyman–Scott problem by Minimum Message
Length. In Proceedings of computing science and statistics – 28th symposium on the interface,
Volume 28, edited by L. Billard and N. I. Fisher, pp. 614–18. Interface Foundation of North
America.

Edgoose, T., L. Allison, and D. L. Dowe. 1998. An MML classification of protein structure that
knows about angles and sequence. In Pacific symposium on biocomputing ‘98, edited by R. B.
Altman, A. K. Dunker, L. Hunter, and T. Klein, pp. 585–96. Singapore: World Scientific.

Edwards, R. T., and D. L. Dowe. 1998. Single factor analysis in MML mixture modelling. In
Proceedings of the 2nd Pacific-Asia conference on research and development in knowledge
discovery and data mining (PAKDD-98), Volume 1394 of Lecture notes in artificial intelli-
gence (LNAI), edited by Xindong Wu, Ramamohanarao Kotagiri, and Kevin B. Korb,
pp. 96–109. Berlin: Springer.

Fitzgibbon, L. J., D. L. Dowe, and F. Vahid. 2004. Minimum message length autoregressive
model order selection. Paper presented at the Proceedings of the International
Conference on Intelligent Sensors and Information Processing, Chennai, India, January,
pp. 439–44. IEEE (IEEE Press).

Forster, M., and E. Sober. 1994. How to tell when simpler, more unified, or less ad hoc theories will
provide more accurate predictions. British Journal for the Philosophy of Science 45: 1–35.

Glymour, C. 1981. Why I am not a Bayesian. Theory and Evidence, edited by C. Glymour and D.
Stalker, pp. 63–93. Princeton: Princeton University Press.

Grossman, J. Forthcoming. The likelihood principle. In Handbook for philosophy of science, Volume
7, Philosophy of statistics. New York: Elsevier.

Grünwald, Peter D., and John Langford. 2007. Suboptimal behavior of Bayes and MDL in classifica-
tion under misspecification. Machine Learning 66 (31): 119–149.

Hernández-Orallo, José. 2000. Beyond the Turing test. Journal of Logic, Language and Information 9
(4): 447–66.

Jeffreys, H. 1946. An invariant form for the prior probability in estimation problems. Proceedings of
the Royal Society of London A 186: 453–4.

Kissane, D. W., S. Bloch, D. L. Dowe, R. D. Snyder, P. Onghena, D. P. McKenzie, and C. S. Wallace.
1996. The Melbourne family grief study, I: Perceptions of family functioning in bereavement.
American Journal of Psychiatry 153: 650–8.

Kissane, D. W., S. Bloch, P. Onghena, D. P. McKenzie, R. D. Snyder, and D. L. Dowe. 1996. The
Melbourne family grief study, II: Psychosocial morbidity and grief in bereaved families.
American Journal of Psychiatry 153: 659–66.

Kolmogorov, A. N. 1965. Three approaches to the quantitative definition of information. Problems of
Information Transmission 1: 4–7.

Kornienko, L., D. W. Albrecht, and D. L. Dowe. 2005a. A preliminary MML linear classifier using
principal components for multiple classes. In Proceedings of the 18th Australian joint confer-
ence on artificial intelligence (AI’2005), Volume 3809 of Lecture notes in artificial intelligence
(LNAI), Sydney, Australia, edited by S. Zhang, and Ray Jarvis, pp. 922–6. Berlin: Springer.

———. 2005b. A preliminary MML linear classifier using principal components for multiple classes.
Technical report CS 2005/179, School of Computer Sci. & Softw. Eng., Monash Univ., Melb.,
Australia.

Kornienko, Lara, David L. Dowe, and David W. Albrecht. 2002. Message length formulation of
support vector machines for binary classification – A preliminary scheme. In Proceedings of
the 15th Australian Joint Conference on Artificial Intelligence, Volume 2557 of Lecture notes in
artificial intelligence (LNAI), edited by B. McKay, and J. K. Slaney, pp. 119–130. Berlin:
Springer-Verlag.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
M
o
n
a
s
h
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
0
7
:
5
0
 
1
7
 
D
e
c
e
m
b
e
r
 
2
0
0
8



Social Epistemology 459

Legg, S., and M. Hutter. 2007. Universal intelligence: A definition of machine intelligence. Minds and
Machines 17 (4): 391–444.

McKenzie, D. P., P. D. McGorry, C. S. Wallace, L. H. Low, D. L. Copolov, and B. S. Singh. 1993.
Constructing a minimal diagnostic decision tree. Methods in Information in Medicine 32:
161–6.

Needham, S. L., and D. L. Dowe. 2001. Message length as an effective Ockham’s razor in decision
tree induction. Paper presented at the 8th International Workshop on Artificial Intelligence
and Statistics (AI+STATS 2001), pp. 253–60.

Neyman, J., and E. L. Scott. 1948. Consistent estimates based on partially consistent observations.
Econometrika 16: 1–32.

Ooi, J. N., and D. L. Dowe. 2005. Inferring phylogenetic graphs of natural languages using minimum
message length. Paper presented at CAEPIA 2005 (11th Conference of the Spanish Association
for Artificial Intelligence), Volume 1, pp. 143–52.

Pilowsky, I., S. Levine, and D.M. Boulton. 1969. The classification of depression by numerical taxon-
omy. British Journal of Psychiatry 115: 937–45.

Prior, M., R. Eisenmajer, S. Leekam, L. Wing, J. Gould, B. Ong, and D. L. Dowe. 1998. Are there
subgroups within the autistic spectrum? A cluster analysis of a group of children with autistic
spectrum disorders. Journal of Child Psycholology and Psychiatry 39 (6): 893–902.

Rissanen, J. J. 1978. Modeling by shortest data description. Automatica 14: 465–71.
Schwarz, G. 1978. Estimating dimension of a model. Annals of Statistics 6: 461–4.
Shannon, C. E. 1948. A mathematical theory of communication. The Bell System Technical Journal

27: 379–423 and 623–56.
Solomonoff, R. J. 1964. A formal theory of inductive inference. Information and Control 7: 1–22,

224–54.
Tan, P. J., and D. L. Dowe. 2002. MML inference of decision graphs with multi-way joins. In

Proceedings of the 15th Australian Joint Conference on Artificial Intelligence, Volume 2557 of
Lecture notes in artificial intelligence (LNAI), edited by R. McKay and J. Slaney, pp. 131–42.
Berlin: Springer Verlag.

———. 2003. MML inference of decision graphs with multi-way joins and dynamic attributes. In
Proceedings of the 16th Australian Joint Conference on Artificial Intelligence, Volume 2903 of
Lecture Notes in Artificial Intelligence (LNAI), edited by T. D. Gedeon, and L. Chun Che
Fung, pp. 269–81. Berlin: Springer.

———. 2004. MML inference of oblique decision trees. In Proceedings of the 17th Australian Joint
Conference on Artificial Intelligence, Volume 3339 of Lecture Notes in Artificial Intelligence
(LNAI), edited by G. I. Webb, and Xinghuo Yu, pp. 1082–8. Berlin: Springer.

———. 2006. Decision forests with oblique decision trees. In Proceedings of the 5th Mexican
international conference on artificial intelligence, Volume 4293 of Lecture Notes in Artificial
Intelligence (LNAI), edited by A. F. Gelbukh, and C. A. Reyes García, pp. 593–603. Berlin:
Springer.

Tan, P. J., D. L. Dowe, and T. I. Dix. 2007. Building classification models from microarray data with
tree-based classification algorithms. In Proceedings of the 20th Australian Joint Conference on
Artificial Intelligence, Volume 4830 of Lecture Notes in Artificial Intelligence (LNAI), edited by
M. A. Orgun, and J. Thornton, pp. 589–98. Berlin: Springer.

Vapnik, V. N. 1995. The nature of statistical learning theory. Berlin: Springer.
Visser, Gerhard, and D. L. Dowe. 2007. Minimum message length clustering of spatially-correlated

data with varying inter-class penalties. In Proceedings of the 6th IEEE international conference
on computer and information science (ICIS) 2007, pp. 17–22. Piscataway, NJ: IEEE Press.

Wallace, C. S. 1995. Multiple factor analysis by MML estimation. Technical report CS TR 95/218,
Dept. of Computer Science, Monash University, Clayton, Victoria 3168, Australia, Clayton,
Melbourne, Australia.

———. 1996. False oracles and SMML estimators. In Proceedings of the Information, Statistics and
Induction in Science (ISIS) Conference, edited by D. L. Dowe, K. B. Korb, and J. J Oliver,

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
M
o
n
a
s
h
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
0
7
:
5
0
 
1
7
 
D
e
c
e
m
b
e
r
 
2
0
0
8



460 D. L. Dowe

pp. 304–316. Singapore: World Scientific. [Was previously Tech Rept 89/128, Dept. Comp.
Sci., Monash Univ., Australia, June 1989.]

———. 1997. On the selection of the order of a polynomial model. Technical report, Royal Holloway
College, England, UK. Chris released this in 1997 (from Royal Holloway) in the belief that it
would become a Royal Holloway Tech Rept dated 1997, but it is not clear that it was ever
released there. Soft copy certainly does exist, though. Perhaps see www.csse.monash.edu.au/
∼dld/CSWallacePublications; INTERNET.

———. 1998. Intrinsic classification of spatially correlated data. Computer Journal 41 (8): 602–611.
———. 2005. Statistical and inductive inference by minimum message length. Information Science

and Statistics series. Berlin: Springer Verlag.
Wallace, C. S., and D. M. Boulton. 1968. An information measure for classification. Computer Journal

11 (2): 185–94.
———. 1975. An invariant Bayes method for point estimation. Classification Society Bulletin 3 (3):

11–34.
Wallace, C. S., and D. L. Dowe. 1993. MML estimation of the von Mises concentration parameter.

Technical Report 93/193, Dept. of Computer Science, Monash University, Clayton 3168,
Australia, December.

———. 1994. Intrinsic classification by MML – the Snob program. In Proceedings of the 7th Australian
Joint Conference on Artificial Intelligence, edited by C. Zhang, J. Debenham and D. Lukose
pp. 37–44. Singapore: World Scientific.

———. 1999a. Minimum message length and Kolmogorov complexity. Computer Journal 42 (4):
270–283.

———. 1999b. Refinements of MDL and MML coding. Computer Journal 42 (4): 330–7.
———. 1999c. Rejoinder. Computer Journal 42 (4): 345–7.
———. 2000. MML clustering of multi-state, Poisson, von Mises circular and Gaussian distribu-

tions. Statistics and Computing 10 (1): 73–83.
Wallace, C. S., and P. R. Freeman. 1987. Estimation and inference by compact coding. Journal of the

Royal Statistical Society series B 49 (3): 240–52. See also Discussion on pp. 252–65.
———. 1992. Single-factor analysis by minimum message length estimation. Journal of the Royal

Statistical Society B 54 (1): 195–209.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
M
o
n
a
s
h
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
0
7
:
5
0
 
1
7
 
D
e
c
e
m
b
e
r
 
2
0
0
8


