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Abstract. We extend phylogenetic (or evolutionary) trees to phyloge-
netic graphs. Unlike phylogenetic trees, phylogenetic graphs are capable
of modelling evolution where a child node inherits from more than one
parent node. Minimum Message Length (MML)(Wallace and Boulton
1968; Wallace 2005) is an inductive inference method that measures the
goodness of a model. We use MML to infer phylogenetic graphs (includ-
ing mutation probabilities along arcs). We introduce the use of MML to
infer phylogenetic graphs for artificial languages as well as for some Eu-
ropean languages (English, French and Spanish). Our modelling assumes
only copy and change operations on characters, and is based on words
which have the same length in all natural languages considered.

1 Introduction

Evolution of languages happens gradually around us everyday. As modernisation
of society takes place, new words and new grammatical structures are created or
adapted from some languages into different languages. Our aim is to be able to
model this evolution and describe the relationships between different languages.

A phylogenetic model shows the evolutionary interrelationship among vari-
ous species or other entities. In this article, we initially consider a phylogenetic
model of natural languages as an evolutionary tree that shows how different lan-
guages have descended and evolved from one another. We then generalise this by
introducing the notion of phylogenetic graphs, which are like phylogenetic trees
but they permit nodes to have more than one parent. Whereas nodes in a phy-
logenetic tree (other than the root node) must have one common ancestor, this
is not necessarily true of phylogenetic graphs. We then apply these techniques
to natural language text. The languages that will be used include artificial lan-
guages and some European languages (English, French and Castillian Spanish).
Words have been chosen which have the same lengths in all languages, as our pre-
liminary model assumes only copy and change operations on characters. Accents
on characters have been ignored. (This paper is expanded in [10].)



2 Language Compression in building phylogenetic trees

Many previous works inferring phylogenetic trees for languages have been car-
ried out using language compression techniques.

In [4], thirty-three versions of a chain letter (from between 1980 and 1995)
were collected. The measure of similarity between these chain letters is estimated
by compressing the chain letters two at a time. Chain letters that are similar to
each other produce a smaller compression size. From the results of comparing
chain letters, a phylogenetic tree was inferred. The resulting tree appears to be
a “perfect” phylogeny [4], where letters that share the same characteristic are
always grouped together. In earlier work [3], a similar method of comparing lan-
guages used the Lempel and Ziv algorithm (LZ77) [19] to compress languages.
The relative entropy between languages was calculated, as languages with lower
relative entropy have more similarities between them. Using this method, the
authors created a language tree by comparing the translations of “The Univer-
sal Declaration of Human Rights” in over 50 languages [3].

Generalising and allowing a language to have more than one parent yields a
phylogenetic graph rather than a tree structure. We will use Minimum Mesage
Length (see section 3) to infer these, starting in section 4.

3 Minimum Message Length (MML)

We use the information-theoretic Minimum Message Length (MML) [15, 18, 16,
14] principle here to infer phylogenetic trees for languages largely because of
its theoretical optimality properties and its wide-ranging achievements in a vast
range of inference problems - see, e.g., [16, 7, 6, 17, 13, 14].

MML encodes a body of data as a two-part message. The first part consists
of the hypothesis about the data. The second part is the optimal encoding of
the data given that the hypothesis stated in the first part is true. Hence, the
message length for data encoded using MML would be

MsgLength = M sgLength(Hypotheses) + M sgLength(Data| Hypotheses)

If we have a good hypothesis about the data, we save a lot of space in encoding
the data. MML states that the best encoding of the data would be the one which
produces the smallest two-part message length. For discussions of the relation-
ship between MML, the works of Solomonoff [12], Kolmogorov [9] and Chaitin[5]
(and the subsequent Minimum Description Length (MDL) principle [11]) see,
e.g., Wallace and Dowe [16], Comley and Dowe [7] and Wallace [14].



Allison, Wallace and Yee [2] have previously applied MML methods to infer
evolutionary trees for DNA sequences. They used MML to calculate the poste-
rior odds-ratio of two competing phylogenetic trees’ hypotheses. A finite-state
machine is used to model the mutation process between DNA sequences. In this
article, we use MML algorithms to compress the vocabularies of languages for
comparing the similarities between them.

3.1 Multi-state message length and Parameter estimation

The MML parameter estimation for a discrete multi-state distribution discussed
in [17] will be used to model the mutation between languages.

For a multi-state distribution with M states, a uniform prior, h(p) = (M —1)!
is assumed over the (M —1)-dimensional region of hyper-volume 1/(M —1)! given
by p1 + p2 + ... + pm = 1;p; > 0. The parameters for each state are estimated
as given by [15, p187(4), p194(28), p186(2)][13, sec. 5.1][17, eq. 5]

B N+ 1/2
Pm =N+ /2

where n,,, is the number of things in state m and N = nqy +ns + ... +nys. These
parameter estimates lead to the message length being minimized.

Calculating the overall message length for stating both the parameters and
the data encoded using these estimated parameters is (correcting a typo in [17,

eq. 6])

M -1 N R

4 Building a phylogenetic model

To build a phylogenetic model of various languages, the vocabularies of these
languages must firstly be extracted. These vocabularies can then be compressed
using Minimum Message Length (MML) methods (recall sec. 3). The similarity
of language A with languages B,C,D... can be compared by firstly compressing
language A alone, noting the size of the compression. Next, languages B,C,D. ..
are appended to language A one at a time and the compressor compresses these
using a model of their relation to language A. The compressed file size is observed
and compared to the file size that was previously obtained without reference
to language A. Languages that have many similarities with language A would
produce a smaller compressed file size as compared to languages that are totally
different from language A.

Using the method mentioned above, we are then able to compare the simi-
larities between languages.



4.1 Tree and Graph topologies

We will be using 3 languages and considering 5 different topologies for them.
They are as below:

Tree topologies

— Topology 1: The null hypothesis which assumes that all languages are unre-
lated.

languagel language2  language3

— Topology 2: The topology assuming that only 2 out of the 3 languages are
related.

languagel  language2 -> language3

— Topology 3: The tree topology assuming that children language 2 and lan-
guage 3 descend from language 1.

languagel
/ \
v v
language?2 language3d

Graph topologies

— Topology 4: The graph topology assuming that language 3 descends from
parents language 1 and language 2.

languagel language?2
\ /
4 v
language3

— Topology 5: The topology assuming that language 2 descends from language
1, and that language 3 descends from parents language 1 and language 2.
(Note, though, that the copy/change mutation relation between languages 1
and 2 is symmetric.)

languagel -> language2
\ /
v v
language3



4.2 MML method of costing tree and graph topologies

The method of costing MML decision graphs [13] and Generalised Directed
Acyclic Bayesian Networks (which deal with a hybrid mix of continuous and
discrete variables) [6, 7] will be adapted to cost the phylogenetic graphs.

We assume uniform prior probabilities for each of the 5 topologies from sec-
tion 4.1. Hence it will cost —log(1/5) to encode a particular topology. The root
language is encoded with all characters costing log(26+1) = log(27), ignoring
frequencies and not using a multinomial message length. Recalling multinomial
message lengths from sec. 3.1, a child language is encoded using binomial (for
a tree) or multinomial (for a graph) mutations. This is so because our simple
model assumes only copy and change (and neither insert nor delete) operations
on characters. Detailed costing of each topology in section 4.1 is discussed below:

Encoding Tree topologies

— Topology 1: Each language is costed separately, costing log(27) per character.

— Topology 2: Language 1 is costed separately. An extra cost of —log(1/3) is
needed to determine which language sits in the root node of the tree. The
parent language is encoded, and the child language is encoded in terms of
the parent language.

— Topology 3: An extra cost of —log(1/3) is needed to determine which lan-
guage sits in the root node of the tree. The parent language is encoded, and
then each child language is encoded in terms of the root parent language.

Graph topologies

— Topology 4: An extra cost of —log(1/3) is needed to determine which lan-
guage sits in the child node of the tree.

We have considered and used 2 possible ways of encoding the child language
in terms of the parent languages :

e [Topology 4a]: Both parent languages are encoded, and then the child
language is encoded as a discrete trinomial distribution stating for each
character where it descends from (parent 1, parent 2 and not parent 1,
or is a new character).

e [Topology 4b]: Both parent languages are encoded, and then the child
language is encoded as a discrete multi-state distribution for each char-
acter depending on whether parent characters agree or disagree. If both
parents agree, state whether child character agrees or disagrees. If par-
ents disagree, state (using a trinomial distribution) whether child char-
acter comes from parent 1, parent 2 or is a new character.

— Topology 5 [Topologies 5a and 5b]: This topology is encoded the same as
topology 4 except that parent 2 is encoded in terms of parent 1. (Because of
symmetry, an additional cost of —log(1/2) should not actually be required
to determine which language is parent 2.)



4.3 Encoding descended languages

Each child node is encoded as a discrete multi-state distribution. Using MML
parameter estimation, we infer a probability of mutation p,, from each par-
ent language to each child language. While encoding the data, we then state
for each character of the child language whether it is similar to the corre-
sponding character of the parent language, or it is a mutation. In the case of
a mutation, we then have to send the new character following it. This costs
log(Z — 1) = log(26 — 1) = log(25), as we now know that the character is not
the same as that of its parent language.

5 Phylogenetic tree for artificial languages

To test the method we have discussed, 3 sets of vocabularies (50 words each) of
artificial languages are created. A subset of each vocabulary is shown in Table
1. Set A is totally random, consisting of 27 characters (A-Z and .). Set B is 5%
mutated from Set A, and Set C is 5% mutated from Set B. Each word has the
same length as its corresponding (“translation”) mutation in all 3 sets. Using the
tree inference program we have produced using the abovementioned methods,
we infer the phylogenetic tree for these 3 vocabularies.

Our results correctly show a tree using Topology 3 where language B is the
root language and language A and language C descend from it.

Language B
/ \
Pmut(B,A)~ 0.051648 Pmut(B,C)~ 0.049451
/ \
v v
Language A Language C

This is the expected result as we have created vocabularies of equal length. Hence
a mutation from language A to language B is equivalent to a mutation from lan-
guage B to language A. The MML inferred probability of mutation between
language A and language B is 0.051648, whereas the MML inferred probabil-
ity of mutation between language B and language C is 0.049451. This refers to
character-to-character mutation and is very close to the actual mutation proba-
bilities (both 0.05) used to generate these languages.

Detailed cost of tree:
Cost of parent language (Lang. B) (no. of chars * log(27)) = 2158.718926 bits
Cost of child language (Lang. A) binomial distribution = 392.069784 bits
Cost of child language (Lang. C) binomial distribution = 378.562159 bits
Total tree cost = log(5) + log(3) + 2158.72 + 392.07 + 378.56

= 2933.257759 bits



The cheapest phylogenetic graph is a graph (using topology 5b) where Lan-
guage B is the parent node of language C, and language A is the child node of
both language B and language C.

Language B -> Language C
\
v v
Language A

MML inferred probability of mutation between language B and C = 0.049451
Cost of binomial distribution, (language B — > language C) = 378.562159 bits

MML inferred probability that both parents agree = 0.950549
-MML inferred probability that child(A) agrees with both parents = 0.903297
-MML inferred probability that child(B) disagrees with parents = 0.096703
Cost of this binomial distribution = 381.299676 bits

MML inferred probability that both parents (B and C) disagree = 0.049451
-MML inferred probability of coming from parent y = 0.891304
-MML inferred probability of coming from parent z = 0.065217
-MML inferred probability that does not come from parents = 0.043478
Cost of this trinomial distribution = 38.579308 bits

Total message length = 2962.066959 bits

As language B and language C are very similar with only 5% mutation and
both languages can be thought of as either directly or indirectly descending
from language A, such a graph is not unexpected in our findings.

6 Phylogenetic graph for European languages

With the satisfactory results obtained in sec. 5 from artificial languages, we
now move on to European languages. We chose English, French and (Castillian)
Spanish. We selected a vocabulary of 30 words for each of these 3 languages from
[8] (which was only available in printed hard copy). Accents on characters have
been removed and, because our preliminary model uses only copy and change
operations (and no insert and no delete operations) on characters, each word has
the same length as its corresponding translation in all 3 sets. Table 2 shows the
list of words we have used.



Lang. A |Lang. B |Lang. C English French Spanish
aera. aera. aera. baby bebe nene
aertadaer. |aerradaer. |awrradaer. beach plage playa
aerya. aerya. aerva. biscuits biscuits bizcocho
air. air. afr. camping |camping |camping
asdfge. assfge. assfge. cabaret cabaret cabaret
asrpyas. asrpyas. asrpyas. centimetres|centimetres|centimetros
asrtma. asrtma. tsrtma. cream creme crema
astakera. |astakera. |astakera. disaster desastre desastre
awefadfger.|awefabfger. [awefabfger. europe europe europa
awet,. awet,. awet. excursion |excursion |excursion
bser. bser. bher. facial facial facial
bsoty. bsoty. bsoty. jack cric gato
bsrtyaj. bsttyaj. bstteaj. jumper jumper jersey
dfddgr. dfddtr. dfddtr. kilometres |kilometres |kilometros
dfg. vig. vig. litres litres litros
dfpelmy. |dfpelmy. |dfprlmy. lottery loterie loteria
eer. eer. eer. opera opera opera
ert. ert. ert. overseas outremer |exterior
ewg. ewg. ewg. patisserie |patisserie |confiteria
gaerd. gserd. gserd. reception |reception |recepcion
gijs. gijs. gijh. sauna sauna sauna
hdcvsery. |hdcvsery. |hdcvsery. service service servido
hgsryujk. |hgsryujk. |hgsryujk. spade pique pique
hyergf. hytrgf. hetrrf. stop stop pare
kioln. kioln. kiohn. souvenir  |souvenir |recuerdo
mqzo. mgeo. mgeo. taxi taxi taxi
pdib. pdifb. pdib. vinegar vinagre vinagre
gpwomz. |gpwtmz. |gpatmz. waitress serveuse camarera
qvery. qvery. qvery. young jeune joven
zlsdrya. zledrya. zlchrya. Z€ero Z€ero cero

Table 1: Artificial Languages (sec. 5) Table 2: European Languages (sec. 6)

Using our inference method above, the best model we achieved with this limited
size vocabulary is the phylogenetic graph using topology 5a where Spanish is
related to French (recalling secs. 4.1 and 4.2), and English descends from both
French and Spanish.

French
P(from French)~™ 0.834297 | \Pmut (French,Spanish) ~ 0.245174
P(from Spanish | v
not French) = 0.090559 | Spanish
P(from neither)~ 0.075145 \ /
v v

English



Detailed cost of graph:
Cost of parent language (French) (no. of chars * log(27)) = 1226.760976 bits
Cost of parent/“child” language (Spanish) binomial distribution = 734.59 bits
Cost of child language (English) trinomial distribution = 537.698815 bits
Total tree cost = log(5) + log(3) + log(2) + 1226.76 + 734.59 + 537.70

= 2503.954019 bits

The closest tree topology shows French as the root parent with English and
Spanish both descending from French. However, as our vocabularies contain
words of similar length, we can conclude that a mutation from string A to string
B is equivalent to a mutation from string B to string A. Hence with the results
obtained, we know that there are 3 equivalent possible trees that can be con-
cluded from Topology 3. They are:

Tree 1 Tree 2 Tree 3
French Spanish English
Pmut~ 0.164093 / \ Pmut” 0.245174 | |
v v 4 4
English Spanish French French
I |
v v
English Spanish

Detailed cost of tree:

Cost of parent language (French) (no. of chars * log(27)) = 1226.76 bits
Cost of French — > child (Spanish) binomial distribution = 734.59 bits

Cost of French — > child (English) binomial distribution = 549.88 bits
Total tree cost = log(5) + log(3) + 1226.77 + 734.59 + 549.88 = 2515.1 bits

7 Conclusion and future work

We have used a simple MML model to infer phylogenetic trees and (our new
and more general notion of) phylogenetic graphs for both artificial languages
and some European languages (English, French and Spanish) by ignoring ac-
cents and assuming a limited model of copy/change evolution which requires all
compared words to have the same length. We were able to verify our methods
of inferring mutation probabilities between languages using artificial languages
with known mutation probabilities. In work in progress (see, e.g., [10]), we are
using string alignment techniques [1] and finite state machines as studied in [2]
to model inserts, deletes and words evolving to a different length. We also plan
to infer phylogenetic trees of languages using their grammatical structure as well
as their vocabularies. We further aim to refine our methods and use this to study
the endangered languages of the Aboriginal peoples of Australia.
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